

Welcome to Peng3d’s documentation!

[image: _images/peng3d.svg]
 [https://circleci.com/gh/not-na/peng3d][image: _images/peng3d1.svg]
 [https://pypi.python.org/pypi/peng3d]Contents:

	peng3d - Peng3D main module
	peng3d.peng - Main Engine class

	peng3d.window - Windowing with batteries included

	peng3d.layer - Extensible 2D/3D Layering

	peng3d.menu - Flexible menu system

	peng3d.gui - 2D Widget based GUI System

	peng3d.gui.widgets - 2D GUI Widget Base classes

	peng3d.gui.button - Button Widgets

	peng3d.gui.menus - Menus and Dialogs

	peng3d.gui.layout - Layout Helper Classes

	peng3d.gui.layered - Layered Widgets

	peng3d.gui.container - GUI Container and Scrolling system

	peng3d.gui.text - Textual Widgets

	peng3d.gui.slider - Slider and Progressbar Widgets

	peng3d.resource - Resource loading system

	peng3d.i18n - Lightweight Translation Manager

	peng3d.model - Model and Animation system

	peng3d.camera - Camera System

	peng3d.world - World, Terrain and Actor management

	peng3d.actor - Extendable Actor System

	peng3d.actor.player - Player Actors

	peng3d.keybind - Dynamic Keybinding System

	peng3d.config - Configuration system

	peng3d.util - Utility Functions and Classes

	peng3d.util.gui - GUI Utility Functions and Classes

	peng3d.pyglet_patch - Pyglet Monkeypatches

	peng3d.version - Version information

	Events used by Peng3d
	Peng3d Events using sendEvent()

	Pyglet Events using sendPygletEvent()

	Configuration Options for peng3d
	Graphic Settings/OpenGL Base State

	Controls

	Debug Options

	Resource Options

	Translation Options

	Event Options

	Other Options

Indices and tables

	Index

	Module Index

	Search Page

peng3d - Peng3D main module

This Module represents the root of the peng3d Engine.

Most classes contained in submodules are available under the same name, e.g. you can use peng3d.Peng() instead of peng3d.peng.Peng().
Note that for compatibility reasons, peng3d.window is not available by default and will need to be imported directly.

*- importing submodules should be safe as most modules define an __all__ variable.

	peng3d.peng - Main Engine class

	peng3d.window - Windowing with batteries included

	peng3d.layer - Extensible 2D/3D Layering

	peng3d.menu - Flexible menu system

	peng3d.gui - 2D Widget based GUI System

	peng3d.gui.widgets - 2D GUI Widget Base classes

	peng3d.gui.button - Button Widgets

	peng3d.gui.menus - Menus and Dialogs

	peng3d.gui.layout - Layout Helper Classes

	peng3d.gui.layered - Layered Widgets

	peng3d.gui.container - GUI Container and Scrolling system

	peng3d.gui.text - Textual Widgets

	peng3d.gui.slider - Slider and Progressbar Widgets

	peng3d.resource - Resource loading system

	peng3d.i18n - Lightweight Translation Manager

	peng3d.model - Model and Animation system

	peng3d.camera - Camera System

	peng3d.world - World, Terrain and Actor management

	peng3d.actor - Extendable Actor System

	peng3d.actor.player - Player Actors

	peng3d.keybind - Dynamic Keybinding System

	peng3d.config - Configuration system

	peng3d.util - Utility Functions and Classes

	peng3d.util.gui - GUI Utility Functions and Classes

	peng3d.pyglet_patch - Pyglet Monkeypatches

	peng3d.version - Version information

peng3d.peng - Main Engine class

	
class peng3d.peng.Peng(cfg={})

	This Class should only be instantiated once per application, if you want to use multiple windows, see createWindow().

An Instance of this class represents the whole Engine, with all accompanying state and window/world objects.

Be sure to keep your instance accessible, as it will be needed to create most other classes.

	
addEventListener(event, func, raiseErrors=False)

	Adds a handler to the given event.

A event may have an arbitrary amount of handlers, though assigning too
many handlers may slow down event processing.

For the format of event, see sendEvent().

func is the handler which will be executed with two arguments, event_type and data, as supplied to sendEvent().

If raiseErrors is True, exceptions caused by the handler will be re-raised.
Defaults to False.

	
addPygletListener(event_type, handler)

	Registers an event handler.

The specified callable handler will be called every time an event with the same event_type is encountered.

All event arguments are passed as positional arguments.

This method should be used to listen for pyglet events.
For new code, it is recommended to use addEventListener() instead.

See handleEvent() for information about tunneled pyglet events.

For custom events, use addEventListener() instead.

	
createWindow(cls=window.PengWindow, *args, **kwargs)

	Creates a new window using the supplied cls.

If cls is not given, peng3d.window.PengWindow() will be used.

Any other positional or keyword arguments are passed to the class constructor.

Note that this method currently does not support using multiple windows.

Todo

Implement having multiple windows.

	
delEventListener(event, func)

	Removes the given handler from the given event.

If the event does not exist, a NameError [https://docs.python.org/3/library/exceptions.html#NameError] is thrown.

If the handler has not been registered previously, also a NameError [https://docs.python.org/3/library/exceptions.html#NameError] will be thrown.

	
handleEvent(event_type, args, window=None)

	Handles a pyglet event.

This method is called by PengWindow.dispatch_event() and handles all events.

See registerEventHandler() for how to listen to these events.

This method should be used to send pyglet events.
For new code, it is recommended to use sendEvent() instead.
For “tunneling” pyglet events, use event names of the format pyglet:<event>
and for the data use {"args":<args as list>,"window":<window object or none>,"src":<event source>,"event_type":<event type>}

Note that you should send pyglet events only via this method, the above event will be sent automatically.

Do not use this method to send custom events, use sendEvent() instead.

	
registerEventHandler(event_type, handler)

	Registers an event handler.

The specified callable handler will be called every time an event with the same event_type is encountered.

All event arguments are passed as positional arguments.

This method should be used to listen for pyglet events.
For new code, it is recommended to use addEventListener() instead.

See handleEvent() for information about tunneled pyglet events.

For custom events, use addEventListener() instead.

	
run(evloop=None)

	Runs the application main loop.

This method is blocking and needs to be called from the main thread to avoid OpenGL bugs that can occur.

evloop may optionally be a subclass of pyglet.app.base.EventLoop to replace the default event loop.

	
sendEvent(event, data=None)

	Sends an event with attached data.

event should be a string of format <namespace>:<category1>.<subcategory2>.<name>.
There may be an arbitrary amount of subcategories. Also note that this
format is not strictly enforced, but rather recommended by convention.

data may be any Python Object, but it usually is a dictionary containing relevant parameters.
For example, most built-in events use a dictionary containing at least the peng key set to an instance of this class.

If there are no handlers for the event, a corresponding message will be printed to the log file.
To prevent spam, the maximum amount of ignored messages can be configured via events.maxignore and defaults to 3.

If the config value debug.events.dumpfile is a file path, the event type will be added to an internal list and be saved to the given file during program exit.

	
sendPygletEvent(event_type, args, window=None)

	Handles a pyglet event.

This method is called by PengWindow.dispatch_event() and handles all events.

See registerEventHandler() for how to listen to these events.

This method should be used to send pyglet events.
For new code, it is recommended to use sendEvent() instead.
For “tunneling” pyglet events, use event names of the format pyglet:<event>
and for the data use {"args":<args as list>,"window":<window object or none>,"src":<event source>,"event_type":<event type>}

Note that you should send pyglet events only via this method, the above event will be sent automatically.

Do not use this method to send custom events, use sendEvent() instead.

	
class peng3d.peng.HeadlessPeng(cfg={})

	Variant of peng that should work without having pyglet installed.

This class is intended for use in servers as a drop-in replacement for the normal engine class.

Note that this class is only in its beginnings and should not be used yet.

peng3d.window - Windowing with batteries included

	
class peng3d.window.PengWindow(peng, *args, **kwargs)

	Main window class for peng3d and subclass of pyglet.window.Window().

This class should not be instantiated directly, use the Peng.createWindow() method.

	
addMenu(menu)

	Adds a menu to the list of menus.

	
changeMenu(menu)

	Changes to the given menu.

menu must be a valid menu name that is currently known.

Changed in version 1.2a1: The push/pop handlers have been deprecated in favor of the new Menu.on_enter(), Menu.on_exit(), etc. events.

	
dispatch_event(event_type, *args)

	Internal event handling method.

This method extends the behavior inherited from pyglet.window.Window.dispatch_event() [https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window.dispatch_event] by calling the various handleEvent() methods.

By default, Peng.handleEvent(), handleEvent() and Menu.handleEvent() are called in this order to handle events.

Note that some events may not be handled by all handlers during early startup.

	
menu

	Property for accessing the currently active menu.

Always equals self.menus[self.activeMenu].

This property is read-only.

	
on_draw()

	Clears the screen and draws the currently active menu.

	
run(evloop=None)

	Runs the application in the current thread.

This method should not be called directly, especially when using multiple windows, use Peng.run() instead.

Note that this method is blocking as rendering needs to happen in the main thread.
It is thus recommendable to run your game logic in another thread that should be started before calling this method.

evloop may optionally be a subclass of pyglet.app.base.EventLoop to replace the default event loop.

	
set2d()

	Configures OpenGL to draw in 2D.

Note that wireframe mode is always disabled in 2D-Mode, but can be re-enabled by calling glPolygonMode(GL_FRONT_AND_BACK, GL_LINE).

	
set3d(cam)

	Configures OpenGL to draw in 3D.

This method also applies the correct rotation and translation as set in the supplied camera cam.
It is discouraged to use glTranslatef() or glRotatef() directly as this may cause visual glitches.

If you need to configure any of the standard parameters, see the docs about Configuration Options for peng3d.

The graphics.wireframe config value can be used to enable a wireframe mode, useful for debugging visual glitches.

	
set_fps(fps)

	Sets the new FPS limit.

This limit will be used until the application closes or this method is called again.

A value of None will cause the FPS limit to be disabled.

Note that this is only a limit, which may or may not be fulfilled depending on available
resources.

Note

By default, pyglet only redraws the window when an event arrives. To force a certain
redraw rate (which still respects system performance), call pyglet.clock.schedule_interval()
once during initialization with a dummy function and your desired refresh rate in seconds.

	Parameters

	fps –

	Returns

	

	
setup()

	Sets up the OpenGL state.

This method should be called once after the config has been created and before the main loop is started.
You should not need to manually call this method, as it is automatically called by run().

Repeatedly calling this method has no effects.

	
setupFog()

	Sets the fog system up.

The specific options available are documented under graphics.fogSettings.

	
setupLight()

	Sets the light system up.

The specific options available are documented under graphics.lightSettings.

Note that this feature is currently not implemented.

	
toggle_exclusivity(override=None)

	Toggles mouse exclusivity via pyglet’s set_exclusive_mouse() method.

If override is given, it will be used instead.

You may also read the current exclusivity state via exclusive.

peng3d.layer - Extensible 2D/3D Layering

	
class peng3d.layer.Layer(menu, window, peng)

	Base layer class.

A Layer can be used to separate background from foreground or the 3d world from a 2d HUD.

This class by itself does nothing, you will need to subclass it and override the draw() method.

	
draw()

	Called when this layer needs to be drawn.

Override this method in subclasses to redefine behavior.

	
on_menu_enter(old)

	Custom fake event handler called by Menu.on_enter() for every layer.

Useful for adding and removing event handlers per layer.

	
on_menu_exit(new)

	Custom fake event handler called by Menu.on_exit() for every layer.

Useful for adding and removing event handlers per layer.

	
on_redraw()

	Called whenever the Layer should redraw itself.

Note that this method should not be called manually, instead call redraw().

	Returns

	None

	
postdraw()

	Called after the draw() method is called.

This method can be used to reset OpenGL state to avoid conflicts with other code.

Override this method in subclasses to redefine behavior.

	
predraw()

	Called before the draw() method is called.

This method is used in the Layer2D() and Layer3D() subclasses for setting OpenGL state.

Override this method in subclasses to redefine behavior.

	
redraw()

	Call this to redraw the layer.

Note that the redraw will not happen immediately, rather on the next frame that this
layer is rendered. This massively improves performance.

	Returns

	

	
class peng3d.layer.Layer2D(menu, window, peng)

	2D Variant of Layer() and a subclass of the former.

This class makes use of the predraw() method to configure OpenGL to draw 2-Dimensionally.
This class uses PengWindow.set2d() to set the 2D mode.

When overriding the predraw() method, make sure to call the superclass.

	
predraw()

	Uses PengWindow.set2d() to enable a 2D OpenGL state.

	
class peng3d.layer.Layer3D(menu, window, peng, cam)

	3D Variant of Layer() and a subclass of the former.

This class works the same as Layer2D(), only for 3D drawing instead.
This class uses PengWindow.set3d() to set the 3D mode.

Also, the correct glTranslatef() and glRotatef() are applied to simplify drawing objects.
When writing the draw() method of this class, you will only need to use world coordinates, not camera coordinates.
This allows for easy building of Games using First-Person-Perspectives.

	
predraw()

	Uses PengWindow.set3d() to enable a 3D OpenGL state.

	
class peng3d.layer.LayerGroup(menu, window, peng, group)

	Layer variant wrapping the supplied pyglet group.

group may only be an instance of pyglet.graphics.Group [https://pyglet.readthedocs.io/en/latest/modules/graphics/index.html#pyglet.graphics.Group], else a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] will be raised.

Also note that both the predraw() and postdraw() methods are overwritten by this class.

See also

For more information about pyglet groups, see the pyglet docs [http://pyglet.readthedocs.io/en/latest/programming_guide/graphics.html#setting-the-opengl-state].

	
postdraw()

	Re-sets the previous state.

	
predraw()

	Sets the group state.

	
class peng3d.layer.LayerWorld(menu, window, peng, world, viewname)

	Subclass of Layer3D() implementing a 3D Layer showing a specific WorldView.

All arguments passed to the constructor should be self-explanatory.

Note that you may not set any of the attributes directly, or crashes and bugs may appear indirectly within a certain during future re-drawing of the screen.

	
draw()

	Draws the view using the World.render3d() method.

	
on_menu_enter(old)

	Passes the event through to the WorldView to allow for custom behavior.

	
on_menu_exit(new)

	Same as on_menu_enter().

	
predraw()

	Sets up the attributes used by Layer3D() and calls Layer3D.predraw().

	
setView(name)

	Sets the view used to the specified name.

The name must be known to the world or else a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

peng3d.menu - Flexible menu system

	
class peng3d.menu.BasicMenu(name, window, peng)

	Menu base class without layer support.

Each menu is separated from the other menus and can be switched between at any time.

Actions supported by default:

enter is triggered everytime the on_enter() method has been called.

exit is triggered everytime the on_exit() method has been called.

See also

See Menu() for more information.

	
addWorld(world)

	Adds the given world to the internal list.

Worlds that are registered via this method will get all events that are given to this menu passed through.

This mechanic is mainly used to implement actor controllers.

	
draw()

	This method is called if it is time to render the menu.

Override this method in subclasses to customize behavior and actually draw stuff.

	
on_enter(old)

	This fake event handler will be called every time this menu is entered via the PengWindow.changeMenu() method.

This handler will not be called if this menu is already active.

	
on_exit(new)

	This fake event handler will be called every time this menu is exited via the PengWindow.changeMenu() method.

This handler will not be called if this menu is the same as the new menu.

	
class peng3d.menu.Menu(name, window, peng)

	Subclass of BasicMenu adding support for the Layer class.

This subclass overrides the draw and __init__ method, so be sure to call them if you override them.

	
addLayer(layer, z=-1)

	Adds a new layer to the stack, optionally at the specified z-value.

layer must be an instance of Layer or subclasses.

z can be used to override the index of the layer in the stack. Defaults to -1 for appending.

	
draw()

	Draws the layers in the appropriate order.

Layers that have their enabled attribute set to False are skipped.

	
on_enter(old)

	Same as BasicMenu.on_enter(), but also calls Layer.on_menu_enter() on every layer.

	
on_exit(new)

	Same as BasicMenu.on_exit(), but also calls Layer.on_menu_exit() on every layer.

peng3d.gui - 2D Widget based GUI System

	
class peng3d.gui.GUIMenu(name, window, peng, font='Arial', font_size=16, font_color=[62, 67, 73, 255], borderstyle='flat')

	peng3d.menu.Menu subclass adding 2D GUI Support.

Note that widgets are not managed directly by this class, but rather by each SubMenu.

	
addSubMenu(submenu)

	Adds a SubMenu to this Menu.

Note that nothing will be displayed unless a submenu is activated.

	
changeSubMenu(submenu)

	Changes the submenu that is displayed.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the name was not previously registered

	
draw()

	Draws each menu layer and the active submenu.

Note that the layers are drawn first and may be overridden by the submenu and widgets.

	
on_enter(old)

	Same as BasicMenu.on_enter(), but also calls Layer.on_menu_enter() on every layer.

	
submenu

	Property containing the SubMenu instance that is currently active.

	
class peng3d.gui.SubMenu(name, menu, window, peng, font=None, font_size=None, font_color=None, borderstyle=None)

	Sub Menu of the GUI system.

Each instance must be registered with their menu to work properly, see GUIMenu.addSubMenu().

Actions supported by default:

enter is triggered everytime the on_enter() method has been called.

exit is triggered everytime the on_exit() method has been called.

send_form is triggered if the contained form is sent by either pressing enter or
calling send_form().

	
addWidget(widget, order_key=0)

	Adds a widget to this submenu.

order_key optionally specifies the “layer” this widget will be on. Note that
this does not work with batched widgets. All batched widgets will be drawn before
widgets that use a custom draw() method.

	
delWidget(widget)

	Deletes the widget by the given name.

Note that this feature is currently experimental as there seems to be a memory leak with this method.

	
draw()

	Draws the submenu and its background.

Note that this leaves the OpenGL state set to 2d drawing.

	
form_valid(ctx=None)

	Called to pre-check if a form is valid.

Should be overridden by subclasses.

By default, this always returns true.

	Parameters

	ctx – Arbitrary context

	Returns

	If the form is valid

	
getWidget(name)

	Returns the widget with the given name.

	
send_form(ctx=None)

	Triggers whatever form data is entered to be sent.

Only causes action send_form to be sent if submenu is active and form_valid()
returns true.

The given context is stored in form_ctx.

	Parameters

	ctx – Arbitrary context

	Returns

	If the form was actually sent

	
setBackground(bg)

	Sets the background of the submenu.

The background may be a RGB or RGBA color to fill the background with.

Alternatively, a peng3d.layer.Layer instance or other object with a .draw() method may be supplied.
It is also possible to supply any other method or function that will get called.

Also, the strings flat, gradient, oldshadow and material may be given, resulting in a background that looks similar to buttons.

If the Background is None, the default background of the parent menu will be used.

Lastly, the string "blank" may be passed to skip background drawing.

	
class peng3d.gui.GUILayer(name, menu, window, peng)

	Hybrid of GUIMenu and peng3d.layer.Layer2D.

This class allows you to create Head-Up Displays and other overlays easily.

	
draw()

	Draws the Menu.

peng3d.gui.widgets - 2D GUI Widget Base classes

	
class peng3d.gui.widgets.BasicWidget(name, submenu, window, peng, pos=None, size=None)

	Basic Widget class.

Every widget must be registered with their appropriate sub-menus to work properly.

pos may be either a list or 2-tuple of (x,y) for static positions or a function with the signature window_width,window_height,widget_width,widget_height returning a tuple.

size is similar to pos but will only get window_width,window_height as its arguments.

Commonly, the lambda lambda sw,sh,bw,bh: (sw/2.-bw/2.,sh/2.-bh/2.) is used to center the widget.

Additionally, an instance of a subclass of LayoutCell may be passed as pos.
Note that this will automatically override size as well, unless size is also supplied.

The actions available may differ from widget to widget, by default these are used:

	press is called upon starting to click on the widget

	click is called if the mouse is released on the widget while also having been pressed on it before, recommended for typical button callbacks

	context is called upon right-clicking on the widget and may be used to display a context menu

	hover_start signals that the cursor is now hovering over the widget

	hover is called every time the cursor moves while still being over the widget

	hover_end is called after the cursor leaves the widget

	statechanged is called every time the visual state of the widget should change

	
IS_CLICKABLE = False

	Class attribute used to signal if widgets of this class are usually clickable.

This attribute is used to fill the initial value of enabled and can therefore
be overridden on a widget-by-widget basis.

Note that leaving this set to False will prevent most mouse-related actions
from being triggered. This is due to internal optimization and the main benefit of leaving
this option off.

	
clickable

	Property used for determining if the widget should be clickable by the user.

This is only true if the submenu of this widget is active and this widget is enabled.

The widget may be either disabled by setting this property or the enabled attribute.

	
delete()

	Deletes resources of this widget that require manual cleanup.

Currently removes all actions, event handlers and the background.

The background itself should automatically remove all vertex lists to avoid visual artifacts.

Note that this method is currently experimental, as it seems to have a memory leak.

	
draw()

	Draws all vertex lists associated with this widget.

	
enabled

	Property used for storing whether or not this widget is enabled.

May influence rendering and behavior.

Note that the widget will be immediately redrawn if this property is changed.

	
getState()

	Returns the current state of the widget.

One of "pressed", "hover", "disabled" or "idle".
Note that some information may be lost by getting this state,
for example it is not possible to know if the widget is hovered or not
if "pressed" is returned. However, this should not be a problem for
most intended uses of this method.

	
on_redraw()

	Callback to be overridden by subclasses called if redrawing the widget seems necessary.

Note that this method should not be called manually, see redraw() instead.

	
pos

	Property that will always be a 2-tuple representing the position of the widget.

Note that this method may call the method given as pos in the initializer.

The returned object will actually be an instance of a helper class to allow for setting only the x/y coordinate.

This property also respects any Container set as its parent, any offset will be added automatically.

Note that setting this property will override any callable set permanently.

	
redraw()

	Triggers a redraw of the widget.

Note that the redraw may not be executed instantly, but rather batched together on the next frame.
If an instant and synchronous redraw is needed, use on_redraw() instead.

	
registerEventHandlers()

	Registers event handlers used by this widget, e.g. mouse click/motion and window resize.

This will allow the widget to redraw itself upon resizing of the window in case the position needs to be adjusted.

	
size

	Similar to pos but for the size instead.

	
visible

	Property used for storing whether or not this widget is enabled.

May influence rendering and behavior.

Note that the widget will be immediately redrawn if this property is changed.

	
class peng3d.gui.widgets.Background(widget)

	Class representing the background of a widget.

Note that if a background is used as the background of a SubMenu, the SubMenu instance
itself should be passed as the widget.

This base class does not do anything.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
is_hovering

	Read-only helper property for easier access.

Equivalent to widget.is_hovering.

	
peng

	Property for accessing the parent widget’s instance of peng3d.peng.Peng.

	
pressed

	Read-only helper property for easier access.

Equivalent to widget.pressed.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
reg_vlist(vlist)

	Registers a vertex list to the internal list.

This allows the class to clean itself up properly during deletion, as the background would still be visible after deletion otherwise.

	
submenu

	Property for accessing the parent widget’s submenu.

	
window

	Property for accessing the parent widget’s window.

	
class peng3d.gui.widgets.Widget(name, submenu, window, peng, pos=None, size=None, bg=None, min_size=None)

	Subclass of BasicWidget adding support for changing the Background.

If no background is given, an EmptyBackground will be used instead.

	
on_redraw()

	Draws the background and the widget itself.

Subclasses should use super() to call this method, or rendering may glitch out.

	
setBackground(bg)

	Sets the background of the widget.

This may cause the background to be initialized.

	
class peng3d.gui.widgets.EmptyBackground(widget)

	Background that draws simply nothing.

Can be used as a placeholder.

peng3d.gui.button - Button Widgets

	
class peng3d.gui.button.Button(name, submenu, window, peng, pos=None, size=None, bg=None, border=[4, 4], borderstyle=None, label='Button', min_size=None, font_size=None, font=None, font_color=None, label_layer=1)

	Button Widget allowing the user to trigger specific actions.

By default, this Widget uses ButtonBackground as its Background class.

The border given is in pixels from the left/right and top/bottom, respectively.

The borderstyle may be either flat, which has no border at all,
gradient, which fades from the inner color to the background color,
oldshadow, which uses a simple fake shadow with the light from the top-left corner and
material, which imitates Google Material Design shadows.

Also, the label of the button may only be a single line of text, anything else may produce undocumented behavior.

If necessary, the font size of the Label may be changed via the global Constant LABEL_FONT_SIZE, changes will only apply to Buttons created after change.
The text color used is [62,67,73,255] in RGBA and the font used is Arial, which should be available on most systems.

	
delete()

	Deletes resources of this widget that require manual cleanup.

Currently removes all actions, event handlers and the background.

The background itself should automatically remove all vertex lists to avoid visual artifacts.

Note that this method is currently experimental, as it seems to have a memory leak.

	
label

	Property for accessing the label of this Button.

	
on_redraw()

	Draws the background and the widget itself.

Subclasses should use super() to call this method, or rendering may glitch out.

	
redraw_label()

	Re-draws the label by calculating its position.

Currently, the label will always be centered on the Button.

	
class peng3d.gui.button.ButtonBackground(widget, border=[4, 4], borderstyle='flat', batch=None, change_on_press=None)

	Background for the Button Widget.

This background renders the button and its border, but not the label.

	
addBorderstyle(name, func)

	Adds a borderstyle to the background object.

Note that borderstyles must be registered seperately for each background object.

name is the (string) name of the borderstyle.

func will be called with its arguments as (bg,o,i,s,h), see getColors() for more information.

	
getColors()

	Overrideable function that generates the colors to be used by various borderstyles.

Should return a 5-tuple of (bg,o,i,s,h).

bg is the base color of the background.

o is the outer color, it is usually the same as the background color.

i is the inner color, it is usually lighter than the background color.

s is the shadow color, it is usually quite a bit darker than the background.

h is the highlight color, it is usually quite a bit lighter than the background.

	
getPosSize()

	Helper function converting the actual widget position and size into a usable and offsetted form.

This function should return a 6-tuple of (sx,sy,x,y,bx,by) where sx and sy are the size, x and y the position and bx and by are the border size.

All values should be in pixels and already include all offsets, as they are used directly for generation of vertex data.

This method can also be overridden to limit the background to a specific part of its widget.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
is_hovering

	Read-only helper property to be used by borderstyles for determining if the widget should be rendered as hovered or not.

Note that this property may not represent the actual hovering state, it will always be False if change_on_press is disabled.

	
pressed

	Read-only helper property to be used by borderstyles for determining if the widget should be rendered as pressed or not.

Note that this property may not represent the actual pressed state, it will always be False if change_on_press is disabled.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.button.ImageButton(name, submenu, window, peng, pos=None, size=None, bg=None, label='Button', font_size=None, font=None, font_color=None, bg_idle=None, bg_hover=None, bg_disabled=None, bg_pressed=None, label_layer=1)

	Subclass of Button using an image as a background instead.

By default, this Widget uses ImageBackground as its Background class.

There are no changes to any other mechanics of the Button, only visually.

	
class peng3d.gui.button.ImageBackground(widget, bg_idle=None, bg_hover=None, bg_disabled=None, bg_pressed=None)

	Background for the ImageButton Widget.

This background renders a image given based on whether the widget is pressed, hovered over or disabled.

It should also be possible to use this class as a background for most other Widgets.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
pressed

	Read-only helper property to be used by borderstyles for determining if the widget should be rendered as pressed or not.

Note that this property may not represent the actual pressed state, it will always be False if change_on_press is disabled.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.button.FramedImageButton(name, submenu, window, peng, pos=None, size=None, bg=None, label='Button', font_size=None, font=None, font_color=None, bg_idle=None, bg_hover=None, bg_disabled=None, bg_pressed=None, frame=[[2, 10, 2], [2, 10, 2]], scale=(1, 1), repeat_edge=False, repeat_center=False, tex_size=None, label_layer=1)

	Subclass of ImageButton adding smart scaling to the background.

By default, this Widget uses FramedImageBackground as its Background class.

frame defines the ratio between the borders and the center. The sum of each item must
be greater than zero, else a ZeroDivisionError may be thrown. Note that up to two items
of each frame may be left as 0. This will cause the appropriate border or center
to not be rendered at all.

tex_size may be left empty if a resource name is passed. It will then be automatically
determined.

Todo

Document scale

	
class peng3d.gui.button.FramedImageBackground(widget, bg_idle=None, bg_hover=None, bg_disabled=None, bg_pressed=None, frame=[[2, 10, 2], [2, 10, 2]], scale=(0, 0), repeat_edge=False, repeat_center=False, tex_size=None)

	Background for the FramedImageButton Widget.

This background is similar to ImageBackground, but it attempts to scale smarter with less artifacts.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.button.ToggleButton(name, submenu, window, peng, pos=None, size=None, bg=None, border=[4, 4], borderstyle=None, label='Button', min_size=None, font_size=None, font=None, font_color=None, label_layer=1)

	Variant of Button that stays pressed until clicked again.

This widgets adds the following actions:

	press_down is called upon depressing the button

	press_up is called upon releasing the button

	click is changed to be called on every click on the button, e.g. like press_down and press_up combined

	
class peng3d.gui.button.Checkbox(name, submenu, window, peng, pos=None, size=None, bg=None, borderstyle=None, label='Checkbox', checkcolor=[240, 119, 70], font_size=None, font=None, font_color=None, label_layer=1)

	Variant of ToggleButton using a different visual indicator.

By default, this Widget uses CheckboxBackground as its Background class.

Note that the position and size given are for the indicator, the label will be bigger than the given size.

The label given will be displayed to the right of the Checkbox.

	
redraw_label()

	Re-calculates the position of the Label.

	
class peng3d.gui.button.CheckboxBackground(widget, borderstyle, checkcolor=[240, 119, 70], **kwargs)

	Background for the Checkbox Widget.

This background looks like a button, but adds a square in the middle if it is pressed.

The color of the square defaults to a tone of orange commonly found in GTK GUIs on Ubuntu.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

peng3d.gui.menus - Menus and Dialogs

Menus are special submenus that act like modal dialogs.

They include glue code that automatically switches back to the previous submenu
after they are left. Note that this will cuase the SubMenu.on_enter()
method to be called again.

Since these menus are internally implemented as submenus, they are specific to their
Menu, which must be active to be able to use the dialog.

Customization

Menus are customizable via several different means.

If you just want to change the appearance or label of a part of the menu, you can
use keyword arguments while initializing the class.
For example, setting the label_main argument to the string Hello World! the
main label or title of the dialog will now display Hello World! instead of its default
value.
What exact arguments are supported differs from dialog to dialog.

Note that sometimes specific labels are supported, but not used by default.
Just setting these to anything may cause GUI components to be rendered that
should not be there.

It is also possible for most of these values to be set on-the-fly via properties
on the object they belong to.

For example, the DialogSubMenu.label_main property may be set to change
the main label even while the dialog is active.

Note that the values accessible via keyword arguments and properties may differ.
This depends on the dialog implementing them.

For clarity, these keyword arguments will from now on be called “labels”. This also
includes labels that are not strictly text, like the maximum value of a progressbar.

	
class peng3d.gui.menus.DialogSubMenu(name, menu, window, peng, borderstyle=None, font_size=None, font=None, font_color=None, multiline=False, **kwargs)

	Base Dialog Class.

This class acts as a base class for all other dialog submenus.

When the dialog is entered, the prev_submenu attribute will be set
to the name of the previous submenu. This attribute is later used when exiting
the dialog.

Dialog submenus also support the basic actions used by all submenus, e.g.
enter and exit. Additionally, many dialogs also add actions for whenever
a label is changed or the dialog is exited through a special means, e.g. pressing
a specific button of multiple presented.

If used by itself, it will display a text centered on the screen with a button
below it. Clicking the button will cause the dialog to exit and also the
additional click_ok action to be fired.

The labels supported by default are label_main, which defaults to Default Text
and is recommended to always be customized, and label_ok, which defaults to OK
and may be left as-is.

Subclasses may override these defaults by setting the keys of the same name in the
DEFAULT_LABELS class attribute. Note that any unchanged labels must also be declared
when overwriting any labels, or they may not be displayed.

Widgets and their initializers are stored in the WIDGETS class attribute,
see add_widgets() for more information.

	
activate()

	Helper method to enter the dialog.

Calling this method will simply cause the dialog to become the active submenu.

Note that is not necessary to call this method over changeSubMenu(),
as the storing of the previous submenu is done elsewhere.

	
add_btn_ok(label_ok)

	Adds an OK button to allow the user to exit the dialog.

This widget can be triggered by setting the label label_ok to a string.

This widget will be mostly centered on the screen, but below the main label
by the double of its height.

	
add_label_main(label_main)

	Adds the main label of the dialog.

This widget can be triggered by setting the label label_main to a string.

This widget will be centered on the screen.

	
add_widgets(**kwargs)

	Called by the initializer to add all widgets.

Widgets are discovered by searching through the WIDGETS class attribute.
If a key in WIDGETS is also found in the keyword arguments and
not none, the function with the name given in the value of the key will
be called with its only argument being the value of the keyword argument.

For more complex usage scenarios, it is also possible to override this method
in a subclass, but the original method should always be called to ensure
compatibility with classes relying on this feature.

	
exitDialog()

	Helper method that exits the dialog.

This method will cause the previously active submenu to activate.

	
label_main

	Property that proxies the label_main label.

Setting this property will cause the label_main_change action to trigger.

Note that trying to access this property if the widget is not used may cause
an error.

	
label_ok

	Property that proxies the label_ok label.

Setting this property will cause the label_ok_change action to trigger.

Note that trying to access this property if the widget is not used may cause
an error.

	
class peng3d.gui.menus.ConfirmSubMenu(name, menu, window, peng, borderstyle=None, font_size=None, font=None, font_color=None, multiline=False, **kwargs)

	Dialog that allows the user to confirm or cancel an action.

By default, the OK button will be hidden and the label_main will be set
to Are you sure?.

Clicking the confirm button will cause the confirm action to trigger, while
the cancel button will cause the cancel action to trigger.

	
add_btn_cancel(label_cancel)

	Adds a cancel button to let the user cancel whatever choice they were given.

This widget can be triggered by setting the label label_cancel to a string.

This widget will be positioned slightly below the main label and to the right
of the confirm button.

	
add_btn_confirm(label_confirm)

	Adds a confirm button to let the user confirm whatever action they were presented with.

This widget can be triggered by setting the label label_confirm to a string.

This widget will be positioned slightly below the main label and to the left
of the cancel button.

	
label_cancel

	Property that proxies the label_cancel label.

Setting this property will cause the label_cancel_change action to trigger.

Note that trying to access this property if the widget is not used may cause
an error.

	
label_confirm

	Property that proxies the label_confirm label.

Setting this property will cause the label_confirm_change action to trigger.

Note that trying to access this property if the widget is not used may cause
an error.

	
class peng3d.gui.menus.TextSubMenu(name, menu, window, peng, borderstyle=None, timeout=10, **kwargs)

	Dialog without user interaction that can automatically exit after a certain amount of time.

This dialog accepts the timeout keyword argument, which may be set to any
time in seconds to delay before exiting the dialog. A value of -1 will cause
the dialog to never exit on its own.

Note that the user will not be able to exit this dialog and may believe the program
is hanging if not assured otherwise. It is thus recommended to use the ProgressSubMenu
dialog instead, especially for long-running operations.

	
class peng3d.gui.menus.ProgressSubMenu(name, menu, window, peng, borderstyle=None, font_size=None, font=None, font_color=None, multiline=False, **kwargs)

	Dialog without user interaction displaying a progressbar.

By default, the progressbar will range from 0-100, effectively a percentage.

The auto_exit attribute may be set to control whether or not the dialog
will exit automatically when the maximum value is reached.

	
add_progressbar(label_progressbar)

	Adds a progressbar and label displaying the progress within a certain task.

This widget can be triggered by setting the label label_progressbar to
a string.

The progressbar will be displayed centered and below the main label.
The progress label will be displayed within the progressbar.

The label of the progressbar may be a string containing formatting codes
which will be resolved via the format() method.

Currently, there are six keys available:

n and value are the current progress rounded to 4 decimal places.

nmin is the minimum progress value rounded to 4 decimal places.

nmax is the maximum progress value rounded to 4 decimal places.

p and percent are the percentage value that the progressbar is completed
rounded to 4 decimal places.

By default, the progressbar label will be {percent}% displaying the percentage
the progressbar is complete.

	
auto_exit = False

	Controls whether or not the dialog will exit automatically after the maximum
value has been reached.

	
label_progressbar

	Property that proxies the label_progressbar label.

Setting this property will cause the progressbar label to be recalculated.

Note that setting this property if the widget has not been initialized may
cause various errors to occur.

	
progress_n

	Property that proxies the progress_n label.

Setting this property will cause the progressbar label to be recalculated.

Additionally, if the supplied value is higher than the maximum value and
auto_exit is true, the dialog will exit.

	
progress_nmax

	Property that proxies the progress_nmax label.

Setting this property will cause the progressbar label to be recalculated.

Note that setting this property if the widget has not been initialized may
cause various errors to occur.

	
progress_nmin

	Property that proxies the progress_nmin label.

Setting this property will cause the progressbar label to be recalculated.

Note that setting this property if the widget has not been initialized may
cause various errors to occur.

	
update_progressbar()

	Updates the progressbar by re-calculating the label.

It is not required to manually call this method since setting any of the
properties of this class will automatically trigger a re-calculation.

	
class peng3d.gui.menus.AdvancedProgressSubMenu(name, menu, window, peng, borderstyle=None, font_size=None, font=None, font_color=None, multiline=False, **kwargs)

	
	
addCategory(*args, **kwargs)

	Proxy for addCategory().

	
add_progressbar(label_progressbar)

	Adds a progressbar and label displaying the progress within a certain task.

This widget can be triggered by setting the label label_progressbar to
a string.

The progressbar will be displayed centered and below the main label.
The progress label will be displayed within the progressbar.

The label of the progressbar may be a string containing formatting codes
which will be resolved via the format() method.

Currently, there are six keys available:

n and value are the current progress rounded to 4 decimal places.

nmin is the minimum progress value rounded to 4 decimal places.

nmax is the maximum progress value rounded to 4 decimal places.

p and percent are the percentage value that the progressbar is completed
rounded to 4 decimal places.

By default, the progressbar label will be {percent}% displaying the percentage
the progressbar is complete.

	
deleteCategory(*args, **kwargs)

	Proxy for deleteCategory().

	
updateCategory(*args, **kwargs)

	Proxy for updateCategory().

peng3d.gui.layout - Layout Helper Classes

	
class peng3d.gui.layout.Layout(peng, parent)

	Base Layout class.

This class does not serve any purpose directly other than to be a common base class
for all layouts.

Note that layouts can be nested, e.g. usually the first layouts parent is a SubMenu
and sub-layouts get a LayoutCell of their parent layout as their parent.

	
class peng3d.gui.layout.GridLayout(peng, parent, res, border)

	Grid-based layout helper class.

This class provides a grid-like layout to its sub-widgets. A border between widgets
can be defined. Additionally, all widgets using this layout should automatically scale
with screen size.

	
cell_size

	Helper property defining the current size of cells in both x and y axis.

	Returns

	2-tuple of float

	
get_cell(pos, size, anchor_x='left', anchor_y='bottom', border=1)

	Returns a grid cell suitable for use as the pos parameter of any widget.

The size parameter of the widget will automatically be overwritten.

	Parameters

	
	pos – Grid position, in cell

	size – Size, in cells

	anchor_x – either left, center or right

	anchor_y – either bottom, center or top

	Returns

	LayoutCell subclass

	
class peng3d.gui.layout.LayoutCell

	Base Layout Cell.

Not to be used directly. Usually subclasses of this class are returned by layouts.

Instances can be passed to Widgets as the pos argument. The size argument will
be automatically overridden.

Note that manually setting size will override the size set by the layout cell,
though the position will be kept.

	
pos

	Property accessing the position of the cell.

This usually refers to the bottom-left corner, but may change depending on arguments
passed during creation.

Note that results can be floats.

	Returns

	2-tuple of (x,y)

	
size

	Property accessing the size of the cell.

Note that results can be floats.

	Returns

	2-tuple of (width, height)

peng3d.gui.layered - Layered Widgets

	
class peng3d.gui.layered.LayeredWidget(name, submenu, window, peng, pos=None, size=None, bg=None, layers=[])

	Layered Widget allowing for easy creation of custom widgets.

A Layered Widget consists of (nearly) any amount of layers in a specific order.

All Layers should be subclasses of BasicWidgetLayer or WidgetLayer.

layers must be a list of 2-tuples of (layer,z_index).

	
addLayer(layer, z_index=None)

	Adds the given layer at the given Z Index.

If z_index is not given, the Z Index specified by the layer will be used.

	
delete()

	Deletes all layers within this LayeredWidget before deleting itself.

Recommended to call if you are removing the widget, but not yet exiting the interpreter.

	
draw()

	Draws all layers of this LayeredWidget.

This should normally be unneccessary, since it is recommended that layers use Vertex Lists instead of OpenGL Immediate Mode.

	
getLayer(name)

	Returns the layer corresponding to the given name.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If there is no Layer with the given name.

	
on_redraw()

	Draws the background and the widget itself.

Subclasses should use super() to call this method, or rendering may glitch out.

	
redraw_layer(name)

	Redraws the given layer.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there is no Layer with the given name.

	
class peng3d.gui.layered.BasicWidgetLayer(name, widget, z_index=None)

	Base class for all Layers to be used with LayeredWidget().

Not to be confused with peng3d.layer.Layer(), these classes are not compatible.

It is recommended to use WidgetLayer() instead, since functionality is limited in this basic class.

Note that the z_index will default to a reasonable value for most subclasses and thus is not required to be given explicitly.
The z_index for this Layer defaults to 0.

	
delete()

	Deletes this Layer.

Currently only deletes VertexLists registered with regVList().

	
draw()

	Called to draw the layer.

Note that using this function is discouraged, use Pyglet Vertex Lists instead.

If you want to call this method manually, call _draw() instead.
This will make sure that predraw() and postdraw() are called.

	
on_redraw()

	Called by the parent widget if this Layer should be redrawn.

Note that it is recommended to call the Baseclass Variant of this Method first when overwriting it.
See WidgetLayer.on_redraw() for more information.

	
postdraw()

	Called after calling the draw() Method.

Useful for unsetting OpenGL state.

	
predraw()

	Called before calling the draw() Method.

Useful for setting up OpenGL state.

	
regVList(vlist)

	Registers a vertex list for proper deletion once this Layer gets destroyed.

This prevents visual artifacts from forming during deletion of a layer.

	
class peng3d.gui.layered.WidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0])

	Subclass of WidgetLayer() adding commonly used utility features.

This subclass adds a border and offset system.

The border is a 2-tuple of (x_border,y_border). The border is applied to all sides, resulting in the size being decreased by two pixel per pixel border width.

offset is relative to the bottom left corner of the screen.

	
border

	Property to be used for setting and getting the border of the layer.

Note that setting this property causes an immediate redraw.

	
getPos()

	Returns the absolute position and size of the layer.

This method is intended for use in vertex position calculation, as the border and offset have already been applied.

The returned value is a 4-tuple of (sx,sy,ex,ey).
The two values starting with an s are the “start” position, or the lower-left corner.
The second pair of values signify the “end” position, or upper-right corner.

	
getSize()

	Returns the size of the layer, with the border size already subtracted.

	
initialize()

	Called just before on_redraw() is called the first time.

	
offset

	Property to be used for setting and getting the offset of the layer.

Note that setting this property causes an immediate redraw.

	
on_redraw()

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
class peng3d.gui.layered.GroupWidgetLayer(name, widget, group=None, z_index=None, border=[0, 0], offset=[0, 0])

	Subclass of WidgetLayer() allowing for using a pyglet group to manage OpenGL state.

If no pyglet group is given, pyglet.graphics.NullGroup() will be used.

	
postdraw()

	Called after calling the draw() Method.

Useful for unsetting OpenGL state.

	
predraw()

	Called before calling the draw() Method.

Useful for setting up OpenGL state.

	
class peng3d.gui.layered.ImageWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], img=[None, None])

	Subclass of WidgetLayer() implementing a simple static image view.

This layer can display any resource representable by the ResourceManager().

img is a 2-tuple of (resource_name,category).

The z_index for this Layer defaults to 1.

	
initialize()

	Called just before on_redraw() is called the first time.

	
on_redraw()

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
class peng3d.gui.layered.DynImageWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], imgs={}, default=None)

	Subclass of WidgetLayer allowing for dynamic images.

imgs is a dictionary of names to 2-tuples of (resource_name,category).

If no default image name is given, a semi-random one will be selected.

The z_index for this Layer defaults to 1.

	
addImage(name, rsrc)

	Adds an image to the internal registry.

rsrc should be a 2-tuple of (resource_name,category).

	
initialize()

	Called just before on_redraw() is called the first time.

	
on_redraw()

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
switchImage(name)

	Switches the active image to the given name.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there is no such image

	
class peng3d.gui.layered.FramedImageWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], imgs={}, default=None, frame=[[2, 10, 2], [2, 10, 2]], scale=(0, 0), repeat_edge=False, repeat_center=False, tex_size=None)

	Subclass of DynImageWidgetLayer allowing for dynamically smart scaled images.

Similar to FramedImageButton. Allows for scaling and/or repeating
the borders, corners and center independently.

Note that the tex_size parameter, if not given, will be derived from a random texture
that has been given in imgs. Also note that the frame, scale,
repeat_edge and repeat_center parameters are identical for all images.

	
initialize()

	Called just before on_redraw() is called the first time.

	
on_redraw()

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
class peng3d.gui.layered.ImageButtonWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], img_idle=None, img_pressed=None, img_hover=None, img_disabled=None)

	Subclass of DynImageWidgetLayer() that acts like an ImageButton().

The img_* arguments are of the same format as in DynImageWidgetLayer().

This class internally uses the BasicWidget.getState() method for getting the state of the widget.

	
class peng3d.gui.layered.LabelWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], label='', font_size=None, font=None, font_color=None, multiline=False)

	Subclass of WidgetLayer() displaying arbitrary plain text.

Note that this method internally uses a pyglet Label that is centered on the Layer.

The z_index for this Layer defaults to 2.

	
label

	Property for accessing the text of the label.

	
on_redraw(dt=None)

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
redraw_label()

	Re-draws the text by calculating its position.

Currently, the text will always be centered on the position of the layer.

	
class peng3d.gui.layered.FormattedLabelWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], label='', font_size=None, font='Arial', font_color=None, multiline=False)

	Subclass of WidgetLayer() serving as a base class for other formatted label layers.

The Label Type can be set via the class attribute cls, it should be set to any class that is compatible with pyglet.text.Label [https://pyglet.readthedocs.io/en/latest/modules/text/index.html#pyglet.text.Label].

It is recommended to use one of the subclasses of this class instead of this class directly.

The z_index for this Layer defaults to 2.

	
label

	Property for accessing the text of the label.

Note that depending on the type of format, this property may not exactly represent the original text as it is converted internally.

	
on_redraw(dt=None)

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
redraw_label()

	Re-draws the text by calculating its position.

Currently, the text will always be centered on the position of the layer.

	
class peng3d.gui.layered.HTMLLabelWidgetLayer(name, widget, z_index=None, border=[0, 0], offset=[0, 0], label='', font_size=None, font='Arial', font_color=None, multiline=False)

	Subclass of FormattedLabelWidgetLayer implementing a basic HTML Label.

Note that not all tags are supported, see the docs for pyglet.text.HTMLLabel [https://pyglet.readthedocs.io/en/latest/modules/text/index.html#pyglet.text.HTMLLabel] for details.

	
class peng3d.gui.layered.BaseBorderWidgetLayer(name, widget, z_index=None, base_border=[0, 0], base_offset=[0, 0], border=[4, 4, 4, 4, 4, 4, 4, 4], style='flat', batch=None, change_on_press=None)

	Subclass of WidgetLayer that displays a basic border around the layer.

Note that not all styles will look good with this class, see ButtonBorderWidgetLayer() for more information.

Note that the border and offset arguments have been renamed to base_border and base_offset to prevent naming conflicts.

Subclasses may set the n_vertices value to change the number of
vertices or change_on_press to change the default value for the
argument of the same name.
By default, 36 vertices are used and changed_on_press is set to True.

The z_index for this Layer defaults to 0.5.

	
addStyle(name, func)

	Adds a style to the layer.

Note that styles must be registered seperately for each layer.

name is the (string) name of the style.

func will be called with its arguments as (bg,o,i,s,h), see getColors() for more information.

	
genVertices()

	Called to generate the vertices used by this layer.

The length of the output of this method should be three times the n_vertices attribute.

See the source code of this method for more information about the order of the vertices.

	
getColors()

	Overrideable function that generates the colors to be used by various styles.

Should return a 5-tuple of (bg,o,i,s,h).

bg is the base color of the background.

o is the outer color, it is usually the same as the background color.

i is the inner color, it is usually lighter than the background color.

s is the shadow color, it is usually quite a bit darker than the background.

h is the highlight color, it is usually quite a bit lighter than the background.

The returned values may also be statically overridden by setting the color_ attribute to anything but None.

	
initialize()

	Called just before on_redraw() is called the first time.

	
is_hovering

	Read-only helper property to be used by styles for determining if the layer should be rendered as hovered or not.

Note that this property may not represent the actual hovering state, it will always be False if change_on_press is disabled.

	
on_redraw()

	Called when the Layer should be redrawn.

If a subclass uses the initialize() Method, it is very important to also call the Super Class Method to prevent crashes.

	
pressed

	Read-only helper property to be used by styles for determining if the layer should be rendered as pressed or not.

Note that this property may not represent the actual pressed state, it will always be False if change_on_press is disabled.

	
stretchColors(c)

	Method that is called to stretch the colors.

Note that this should be implemented by subclasses if plausible and reasonable.

	
class peng3d.gui.layered.ButtonBorderWidgetLayer(name, widget, z_index=None, base_border=[0, 0], base_offset=[0, 0], border=[4, 4], style='flat', batch=None, change_on_press=None)

	Subclass of BaseBorderWidgetLayer() implementing Button-Style borders.

This class is based on the ButtonBackground class.
This means that most styles are also available here and should look identical.

Note that this class uses only 20 vertices and is thus not compatible with styles
created for use with BaseBorderWidgetLayer.

Also note that the border argument also only receives two values instead of eight.

	
genVertices()

	Called to generate the vertices used by this layer.

The length of the output of this method should be three times the n_vertices attribute.

See the source code of this method for more information about the order of the vertices.

	
stretchColors(c)

	Method that is called to stretch the colors.

Note that this should be implemented by subclasses if plausible and reasonable.

peng3d.gui.container - GUI Container and Scrolling system

	
class peng3d.gui.container.Container(name, submenu, window, peng, pos=None, size=None, _skip_draw=False, font=None, font_size=None, font_color=None, borderstyle=None)

	Main class of the container system.

This widget may contain other widgets, limiting the childs to only draw within the defined bounds.
Additionally, the given position will also act as a offset, making the child coordinates relative to the parent.

The visible attribute may be set to control whether or not this container is visible.

This Class is a subclass of peng3d.gui.widgets.Widget but also exhibits part of the API of peng3d.gui.SubMenu.

	
addWidget(widget, order_key=0)

	Adds a widget to this container.

Note that trying to add the Container to itself will be ignored.

	
clickable

	Property used for determining if the widget should be clickable by the user.

This is only true if the submenu of this widget is active and this widget is enabled.

The widget may be either disabled by setting this property or the enabled attribute.

	
draw()

	Draws the submenu and its background.

Note that this leaves the OpenGL state set to 2d drawing and may modify the scissor settings.

	
getWidget(name)

	Returns the widget with the given name.

	
on_enter(old)

	Dummy method defined for compatibility with peng3d.gui.SubMenu, simply does nothing.

	
on_exit(new)

	Dummy method defined for compatibility with peng3d.gui.SubMenu, simply does nothing.

	
on_redraw()

	Redraws the background and any child widgets.

	
redraw()

	Triggers a redraw of the widget.

Note that the redraw may not be executed instantly, but rather batched together on the next frame.
If an instant and synchronous redraw is needed, use on_redraw() instead.

	
setBackground(bg)

	Sets the background of the Container.

Similar to peng3d.gui.SubMenu.setBackground(), but only effects the region covered by the Container.

	
class peng3d.gui.container.ScrollableContainer(name, submenu, window, peng, pos=None, size=None, scrollbar_width=12, font=None, font_size=None, font_color=None, borderstyle=None, content_height=100)

	Subclass of Container allowing for scrolling its content.

The scrollbar currently is always on the right side and simply consists of a peng3d.gui.slider.VerticalSlider.

scrollbar_width and borderstyle will be passed to the scrollbar.

content_height refers to the maximum offset the user can scroll to.

The content height may be changed, but manually calling redraw() will be necessary.

	
on_redraw()

	Redraws the background and contents, including scrollbar.

This method will also check the scrollbar for any movement and will be automatically called on movement of the slider.

	
class peng3d.gui.container.ContainerButtonBackground(widget, border=[4, 4], borderstyle='flat', batch=None, change_on_press=None)

	Background class used to render the background of containers using a button style.

Mostly identical with ButtonBackground with added compatibility for containers.

	
getColors()

	Overrideable function that generates the colors to be used by various borderstyles.

Should return a 5-tuple of (bg,o,i,s,h).

bg is the base color of the background.

o is the outer color, it is usually the same as the background color.

i is the inner color, it is usually lighter than the background color.

s is the shadow color, it is usually quite a bit darker than the background.

h is the highlight color, it is usually quite a bit lighter than the background.

peng3d.gui.text - Textual Widgets

	
class peng3d.gui.text.Label(name, submenu, window, peng, pos=None, size=None, bg=None, label='Label', font_size=None, font=None, font_color=None, multiline=False, label_cls=<Mock name='mock.Label' id='139932429572432'>, anchor_x='center', anchor_y='center', label_layer=1)

	Simple widget that can display any single-line non-formatted string.

This widget does not use any background by default.

The default font color is chosen to work on the default background color and may need to be changed if the background color is changed.

	
label

	Property for accessing the text of the label.

	
on_redraw(dt=None)

	Draws the background and the widget itself.

Subclasses should use super() to call this method, or rendering may glitch out.

	
redraw_label()

	Re-draws the text by calculating its position.

Currently, the text will always be centered on the position of the label.

	
class peng3d.gui.text.TextInput(name, submenu, window, peng, pos=None, size=None, bg=None, text='', default='', border=[4, 4], borderstyle=None, font_size=None, font=None, font_color=None, font_color_default=[62, 67, 73, 200], allow_overflow=False, allow_copypaste=True, min_size=None, parent_bgcls=None, allow_returnkey=False, *args, **kwargs)

	
Basic Textual Input widget.

By default, this widget uses TextInputBackground as its Background class.

The optional default text will only be displayed if the text is empty.

The allow_overflow flag determines if the text entered can be longer than the size of the TextInput.

The allow_copypaste flag controls whether or not the user can copy and paste the contents of the text box.
By default, copying and pasting is allowed. This flag can also be set to "force" to force a crash
with an appropriate error message if the pyperclip module is not available.
Currently, only copying, pasting and cutting the whole text box is supported, as there is no mechanism for text selection yet.

The key combinations used by this widget can be configured in the config via the controls.keybinds.common.* config values.

parent_bgcls may be used to override the background used. Note that the cursor will still be rendered.
Additional parameters required by the custom background should be passed as keyword arguments.
Note that arguments already used by TextInput are not passed down. This may cause issues
with ButtonBackground and some other classes.

allow_returnkey determines whether pressing the return key inserts a ``

	`` character or not.

	Note that the send_form action of the submenu may still be sent, even if this is set to true.

	
default

	Property for accessing the default text.

	
draw()

	Draws all vertex lists associated with this widget.

	
on_redraw()

	Draws the background and the widget itself.

Subclasses should use super() to call this method, or rendering may glitch out.

	
redraw_label()

	Re-draws the label by calculating its position.

Currently, the label will always be centered on the position of the label.

	
text

	Property for accessing the text.

	
class peng3d.gui.text.TextInputBackground(*args, **kwargs)

	Background for the TextInput Widget.

This background uses the button drawing routines and adds a cursor.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
pressed

	Read-only helper property to be used by borderstyles for determining if the widget should be rendered as pressed or not.

Note that this property may not represent the actual pressed state, it will always be False if change_on_press is disabled.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.text.CustomTextInputBackground(widget, cls=<class 'peng3d.gui.button.ButtonBackground'>, *args, **kwargs)

	Background for the TextInput Widget.

This background adds a cursor on top of another background.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.text.PasswordInput(*args, replacement_char='*', **kwargs)

	
	
password

	Proxy for text.

	Returns

	Current password

	
text

	Property for accessing the text.

peng3d.gui.slider - Slider and Progressbar Widgets

	
class peng3d.gui.slider.Progressbar(name, submenu, window, peng, pos=None, size=None, bg=None, nmin=0, nmax=100, n=0, border=[4, 4], borderstyle=None, colors=[[240, 119, 70], [240, 119, 70]])

	Progressbar displaying a progress of any action to the user.

By default, this Widget uses ProgressbarBackground as its Background class.

The border and borderstyle options are the same as for the peng3d.gui.button.Button Widget.

The two colors given are for left and right, respectively. This may be used to create gradients.

nmin, nmax and n represent the minimal value, maximal value and current value, respectively.
Unexpected behavior may occur if the minimal value is bigger then the maximum value.

	
n

	Property representing the current value of the progressbar.

Changing this property will activate the progresschange action.

	
nmax

	Property representing the maximum value of the progressbar. Typically 100 to represent percentages easily.

	
nmin

	Property representing the minimal value of the progressbar. Typically 0.

	
value

	Alias to the n property.

	
class peng3d.gui.slider.ProgressbarBackground(widget, border, borderstyle, colors)

	Background for the Progressbar Widget.

This background displays a bar with a border similar to ButtonBackground.
Note that two colors may be given, one for the left and one for the right.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.slider.AdvancedProgressbar(name, submenu, window, peng, pos=None, size=None, bg=None, categories={}, offset_nmin=0, offset_nmax=0, offset_n=0, border=[4, 4], borderstyle=None, colors=[[240, 119, 70], [240, 119, 70]])

	Advanced Progressbar displaying the combined progress through multiple actions.

Visually, this widget is identical to Progressbar with the only difference
being the way the progress percentage is calculated.

The offset_nmin, offset_n and offset_nmax parameters are equivalent
to the parameters of the same name minus the offset_ prefix.

categories may be any dictionary mapping category names to 3-tuples of
format (nmin,n,nmax).

It is possible to read, write and delete categories through the widget[cat] syntax.
Note however, that modifying categories in-place, e.g. like widget[cat][1]=100,
requires a manual call to redraw().

When setting the nmin, n or nmax properties, only
an internal offset value will be modified. This may result in otherwise unexpected behavior
if setting e.g. n to nmax because the categories may influence the total percentage calculation.

	
addCategory(name, nmin=0, n=0, nmax=100)

	Adds a category with the given name.

If the category already exists, a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] will be thrown. Use
updateCategory() instead if you want to update a category.

	
deleteCategory(name)

	Deletes the category with the given name.

If the category does not exist, a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] will be thrown.

	
n

	Property representing the current value of the progressbar.

Changing this property will activate the progresschange action.

	
nmax

	Property representing the maximum value of the progressbar. Typically 100 to represent percentages easily.

	
nmin

	Property representing the minimal value of the progressbar. Typically 0.

	
updateCategory(name, nmin=None, n=None, nmax=None)

	Smartly updates the given category.

Only values that are given will be updated, others will be left unchanged.

If the category does not exist, a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] will be thrown. Use
addCategory() instead if you want to add a category.

	
class peng3d.gui.slider.Slider(name, submenu, window, peng, pos=None, size=[100, 24], bg=None, border=[4, 4], borderstyle=None, nmin=0, nmax=100, n=0, handlesize=[16, 24])

	Slider that can be used to get a number from the user.

By default, this Widget uses SliderBackground as its Background class.

Most options are the same as for Progressbar.

handlesize simply determines the size of the handle.

Note that scaling this widget on the y-axis will not do much, scale the handlesize instead.

	
p

	Helper property containing the percentage this slider is “filled”.

This property is read-only.

	
class peng3d.gui.slider.SliderBackground(widget, border=[4, 4], borderstyle='flat', batch=None, change_on_press=None)

	Background for the Slider Widget.

This background displays a button-like handle on top of a bar representing the selectable range.

All given parameters will affect the handle.

	
getPosSize()

	Helper function converting the actual widget position and size into a usable and offsetted form.

This function should return a 6-tuple of (sx,sy,x,y,bx,by) where sx and sy are the size, x and y the position and bx and by are the border size.

All values should be in pixels and already include all offsets, as they are used directly for generation of vertex data.

This method can also be overridden to limit the background to a specific part of its widget.

	
init_bg()

	Called just before the background will be drawn the first time.

Commonly used to initialize vertex lists.

It is recommended to add all vertex lists to the submenu.batch2d Batch to speed up rendering and preventing glitches with grouping.

	
redraw_bg()

	Method called by the parent widget every time its Widget.redraw() method is called.

	
class peng3d.gui.slider.VerticalSlider(name, submenu, window, peng, pos=None, size=[24, 100], bg=None, border=[4, 4], borderstyle=None, nmin=0, nmax=100, n=0, handlesize=[24, 16])

	Vertical slider that can be used as a scrollbar or getting other input.

By default, this Widget uses VerticalSliderBackground as its Background class.

This widget is essentially the same as Slider, only vertical.

Note that you may need to flip the x and y values of size, handlesize and border compared to Slider.

	
class peng3d.gui.slider.VerticalSliderBackground(widget, border=[4, 4], borderstyle='flat', batch=None, change_on_press=None)

	Background for the VerticalSlider Widget.

This background uses the same technique as SliderBackground, simply turned by 90 Degrees.

	
getPosSize()

	Helper function converting the actual widget position and size into a usable and offsetted form.

This function should return a 6-tuple of (sx,sy,x,y,bx,by) where sx and sy are the size, x and y the position and bx and by are the border size.

All values should be in pixels and already include all offsets, as they are used directly for generation of vertex data.

This method can also be overridden to limit the background to a specific part of its widget.

peng3d.resource - Resource loading system

	
class peng3d.resource.ResourceManager(peng, basepath)

	Manager that allows for efficient and simple loading and management of different kinds of resources.

Currently supports textures and models out of the box, but extension is possible.

Textures can be queried by any part of the application, they are only loaded on the first request and then cached for every request following it.

The same caching and lazy-loading principle applies to models loaded via this system.

	
addCategory(name, size=None)

	Adds a new texture category with the given name.

If the category already exists, it will be overridden.

	
addFromTex(name, img, category)

	Adds a new texture from the given image.

img may be any object that supports Pyglet-style copying in form of the blit_to_texture() method.

This can be used to add textures that come from non-file sources, e.g. Render-to-texture.

	
getMissingTexture()

	Returns a texture to be used as a placeholder for missing textures.

A default missing texture file is provided in the assets folder of the source distribution.
It consists of a simple checkerboard pattern of purple and black, this image may be copied to any project using peng3d for similar behavior.

If this texture cannot be found, a pattern is created in-memory, simply a solid square of purple.

This texture will also be cached separately from other textures.

	
getModel(name)

	Gets the model object by the given name.

If it was loaded previously, a cached version will be returned.
If it was not loaded, it will be loaded and inserted into the cache.

	
getModelData(name)

	Gets the model data associated with the given name.

If it was loaded, a cached copy will be returned.
It it was not loaded, it will be loaded and cached.

	
getTex(name, category)

	Gets the texture associated with the given name and category.

category must have been created using addCategory() before.

If it was loaded previously, a cached version will be returned.
If it was not loaded, it will be loaded and inserted into the cache.

See loadTex() for more information.

	
loadModel(name)

	Loads the model of the given name.

The model will also be inserted into the cache.

	
loadModelData(name)

	Loads the model data of the given name.

The model file must always be a .json file.

	
loadTex(name, category)

	Loads the texture of the given name and category.

All textures currently must be PNG files, although support for more formats may be added soon.

If the texture cannot be found, a missing texture will instead be returned. See getMissingTexture() for more information.

Currently, all texture mipmaps will be generated and the filters will be set to
GL_NEAREST for the magnification filter and GL_NEAREST_MIPMAP_LINEAR for the minification filter.
This results in a pixelated texture and not a blurry one.

	
resourceExists(name, ext='')

	Returns whether or not the resource with the given name and extension exists.

This must not mean that the resource is meaningful, it simply signals that the file exists.

	
resourceNameToPath(name, ext='')

	Converts the given resource name to a file path.

A resource path is of the format <app>:<cat1>.<cat2>.<name> where cat1 and cat2 can be repeated as often as desired.

ext is the file extension to use, e.g. .png or similar.

As an example, the resource name peng3d:some.category.foo with the extension .png results in the path <basepath>/assets/peng3d/some/category/foo.png.

This resource naming scheme is used by most other methods of this class.

Note that it is currently not possible to define multiple base paths to search through.

peng3d.i18n - Lightweight Translation Manager

	
class peng3d.i18n.TranslationManager(peng)

	Manages sets of translation files in multiple languages.

This Translation System uses language codes to identify languages, there is
no requirement to follow a specific standard, but it is recommended to use
simple 2-digit codes like en and de, adding an underscore to
define sub-languages like en_gb and en_us.

Whenever a new translation file is needed, it will be parsed and then cached.
This speeds up access times and also practically eliminates load times when
switching languages.

Several events are sent by this class, see peng3d:i18n.* Events Category.

Most of these events are also sent as actions, these actions are described
in the methods that cause them.

There are also severale config options that determine the behaviour of this class.
See Translation Options for more information.

This Manager requires the ResourceManager() to
be already initialized.

	
discoverLangs(domain='*')

	Generates a list of languages based on files found on disk.

The optional domain argument may specify a domain to use when checking
for files. By default, all domains are checked.

This internally uses the glob [https://docs.python.org/3/library/glob.html#module-glob] built-in module and the
i18n.lang.format config option to find suitable filenames.
It then applies the regex in i18n.discover_regex to extract the
language code.

	
setLang(lang)

	Sets the default language for all domains.

For recommendations regarding the format of the language code, see
TranslationManager.

Note that the lang parameter of both translate() and
translate_lazy() will override this setting.

Also note that the code won’t be checked for existence or plausibility.
This may cause the fallback strings to be displayed instead if the language
does not exist.

Calling this method will cause the setlang action and the
:peng3d:event`peng3d:i18n.set_lang` event to be triggered. Note that both
action and event will be triggered even if the language did not actually change.

This method also automatically updates the i18n.lang config value.

peng3d.model - Model and Animation system

	
peng3d.model.grouper(iterable, n, fillvalue=None)

	Allows for iteration over multiple elements of a iterable at once.

iterable may be any iterable, its values will be returned. Note that this may be iterated over more than once.

n is the size of each group. May be any positive integer.

fillvalue is optionally used to fill any groups that do not have enough items, for example if the length of the iterable is not divisible by n.

Example:

>>> for i in grouper("foobarbaz",2,fillvalue=" "):
... print(i)
fo
ob
ar
ba
z # Note the extra space after the z

	
peng3d.model.calcSphereCoordinates(pos, radius, rot)

	Calculates the Cartesian coordinates from spherical coordinates.

pos is a simple offset to offset the result with.

radius is the radius of the input.

rot is a 2-tuple of (azimuth,polar) angles.

Angles are given in degrees. Most directions in this game use the same convention.

The azimuth ranges from 0 to 360 degrees with 0 degrees pointing directly to the x-axis.

The polar angle ranges from -90 to 90 with -90 degrees pointing straight down and 90 degrees straight up.

A visualization of the angles required is given in the source code of this function.

	
peng3d.model.v_magnitude(v)

	Simple vector helper function returning the length of a vector.

v may be any vector, with any number of dimensions

	
peng3d.model.v_normalize(v)

	Normalizes the given vector.

The vector given may have any number of dimensions.

	
class peng3d.model.Material(rsrcMgr, name, matdata)

	Object that describes a single material of a model.

This object stores all relevant data and caches. Note that this object is only created once for each model and shared between all rendered instances of it.

See Model for more information about the model system.

	
id

	Read-only property storing the numerical ID of the texture of this material.

Used to manipulate the texture behind this material.

Commonly used in binding the texture: glBindTexture(material.target,material.id).

	
target

	Read-only property storing the OpenGL constant representing the target of the texture of this material.

Commonly GL_TEXTURE_2D or GL_TEXTURE_3D.

Used in texture manipulation and activation, e.g. glEnable(material.target).

	
tex_coords

	Read-only property storing the texture coordinates to use when drawing with this texture.

Should not be used directly, see transformTexCoords().

Enables substitution of pyglet pyglet.graphics.Texture objects with Materials in many places, e.g. in pyglet.graphics.TextureGroup [https://pyglet.readthedocs.io/en/latest/modules/graphics/index.html#pyglet.graphics.TextureGroup].

	
texdata

	Read-only property equivalent to a 3-tuple containing target, id and tex_coords.

Should be faster than getting each value directly. Useful if all of these values are needed.

	
transformTexCoords(data, texcoords, dims=2)

	Transforms the given texture coordinates using the internal texture coordinates.

Currently, the dimensionality of the input texture coordinates must always be 2 and the output is 3-dimensional with the last coordinate always being zero.

The given texture coordinates are fitted to the internal texture coordinates. Note that values higher than 1 or lower than 0 may result in unexpected visual glitches.

The length of the given texture coordinates should be divisible by the dimensionality.

	
class peng3d.model.Bone(rsrcMgr, name, bonedata)

	Object that represents a single bone of a model.

This object stores all relevant data and caches. Note that this object is only created once for each model and shared between all rendered instances of it.

Actual bone rotation and length is stored per entity and not per model allowing for different bone rotations for multiple entities using the same model.

See Model for more information about the model system.

	
addRegion(region)

	Register a vertex Region as a dependent of this bone.

region must be an instance of Region.

	
ensureBones(data)

	Helper method ensuring per-entity bone data has been properly initialized.

Should be called at the start of every method accessing per-entity data.

data is the entity to check in dictionary form.

	
getLength(data)

	Returns the length of this bone in the given entity.

data is the entity to query in dictionary form.

	
getPivotPoint(data)

	Returns the point this bone pivots around on the given entity.

This method works recursively by calling its parent and then adding its own offset.

The resulting coordinate is relative to the entity, not the world.

	
getRot(data)

	Returns the rotation of this bone in the given entity.

data is the entity to query in dictionary form.

	
setLength(data, blength)

	Sets the length of this bone on the given entity.

data is the entity to modify in dictionary form.

blength is the new length of the bone.

	
setParent(parent)

	Sets the parent of this bone for all entities.

Note that this method must be called before many other methods to ensure internal state has been initialized.

This method also registers this bone as a child of its parent.

	
setRot(data, rot)

	Sets the rotation of this bone on the given entity.

data is the entity to modify in dictionary form.

rot is the rotation of the bone in the format used in calcSphereCoordinates().

	
setRotate(data)

	Sets the OpenGL state required for proper drawing of the model.

Mostly rotates and translates the camera.

It is important to call unsetRotate() after calling this method to properly unset state and avoid OpenGL errors.

	
transformVertices(data, vertices, dims=3)

	Currently unused method that transforms the given vertices according to the rotation of the bone.

Currently just returns the vertices unmodified, will be implemented in the future.

	
unsetRotate(data)

	Unsets the OpenGL state that was set before calling setRotate().

Note that this method may cause various OpenGL errors if called without setRotate() having been called.

	
class peng3d.model.RootBone(rsrcMgr, name, bonedata)

	Special bone that represents the root of a entity.

This bone is immutable and cannot be rotated or otherwise modified.

	
getLength(data)

	Returns the length of this bone in the given entity.

data is the entity to query in dictionary form.

	
getPivotPoint(data)

	Returns the point this bone pivots around on the given entity.

This method works recursively by calling its parent and then adding its own offset.

The resulting coordinate is relative to the entity, not the world.

	
setRotate(data)

	Sets the OpenGL state required for proper drawing of the model.

Mostly rotates and translates the camera.

It is important to call unsetRotate() after calling this method to properly unset state and avoid OpenGL errors.

	
unsetRotate(data)

	Unsets the OpenGL state that was set before calling setRotate().

Note that this method may cause various OpenGL errors if called without setRotate() having been called.

	
class peng3d.model.Region(rsrcMgr, name, regdata)

	Object that represents a vertex region of a model.

A vertex region is associated with a specific bone of the same model it is associated with.
It has a list of vertices and optionally texture coordinates. The texture coordinates are transformed using the material it is associated with.

Most regions will use quads as their primitive type, but it is also possible to use triangles, lines and points.

To use quads as the geometry type, specify either quads, quad or GL_QUADS as its geometry_type.

To use triangles as the geometry type, specify either tris, triangles, triangle or GL_TRIANGLES as its geometry_type.

To use lines as the geometry type, specify either lines, line or GL_LINES as its geometry_type.

To use points as the geometry type, specify either points, point, dots, dot or GL_POINTS as its geometry_type.

Note that the number of vertices must be divisible by the number of vertices required per primitive, e.g. 4 for quads, 3 for triangles, 2 for lines and 1 for points.

Additionally, the number of vertices and texture coordinate pairs must also match.

If any of these conditions are not fulfilled, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised.

	
getGeometryType(data)

	Returns the OpenGL constant representing the type of primitives used by this region.

May be one of GL_QUADS, GL_TRIANGLES, GL_LINES or GL_POINTS.

	
getTexCoords(data)

	Returns the texture coordinates, if any, to accompany the vertices of this region already transformed.

Note that it is recommended to check the enable_tex flag first.

Internally uses Material.transformTexCoords().

	
getTexInfo(data)

	Returns informations about the texture of this region.

Internally uses Material.texdata, exact specification available there.

	
getVertices(data)

	Returns the vertices of this region already transformed and ready-to-use.

Internally uses Bone.transformVertices().

	
class peng3d.model.Animation(rsrcMgr, name, anidata)

	Object that represents an animation of a model.

Animations can be either static or animated using keyframes.

See Model for more information.

	
setBones(bones)

	Sets the internal dictionary of bones in the parent model.

Must be a dictionary, else errors may appear later on.

	
startAnimation(data, jumptype)

	Callback that is called to initialize this animation on a specific actor.

Internally sets the _anidata key of the given dict data.

jumptype is either jump or animate to define how to switch to this animation.

	
tickEntity(data)

	Callback that should be called regularly to update the animation.

It is recommended to call this method about 60 times a second for smooth animations. Irregular calling of this method will be automatically adjusted.

This method sets all the bones in the given actor to the next state of the animation.

Note that startAnimation() must have been called before calling this method.

	
class peng3d.model.JSONModelGroup(model, data, obj, parent=None)

	Pyglet group that sets the state required by a specific actor.

This group should always be set during any draw operations for the assigned actor.
This can either be done by setting it as the group of a vertex list,
the parent group of a group of a vertex list
or manually calling set_state() and unset_state().

	
set_state()

	Sets the state required for this actor.

Currently translates the matrix to the position of the actor.

	
unset_state()

	Resets the state required for this actor to the default state.

Currently resets the matrix to its previous translation.

	
class peng3d.model.JSONRegionGroup(model, data, region, parent=None)

	Pyglet group that manages the state required by a specific vertex region of an actor.

This group and the associated JSONModelGroup should always be set during any draw operation for the assigned region.

See JSONModelGroup for more information about how to do this.

	
set_state()

	Sets the state required for this vertex region.

Currently binds and enables the texture of the material of the region.

	
unset_state()

	Resets the state required for this actor to the default state.

Currently only disables the target of the texture of the material, it may still be bound.

	
class peng3d.model.Model(peng, rsrcMgr, name)

	Object that represents the model of an actor.

Note that this object is not bound to an actor but rather to a collection of materials, bones, vertex regions and animations.

A single instance of this class may be used by multiple actors at the same time. See Actor.setModel() for more information.

A test model is available at assets/peng3d/model/test.json and a demo program using it under test_model.py.

Todo

Document the format of .json model files.

	
cleanup(obj)

	Cleans up any left over data structures, including vertex lists that reside in GPU memory.

Behaviour is undefined if it is attempted to use this model with the same object without calling create() first.

It is very important to call this method manually during deletion as this will delete references to data objects stored in global variables of third-party modules.

	
create(obj, cache=False)

	Initializes per-actor data on the given object for this model.

If cache is set to True, the entity will not be redrawn after initialization.

Note that this method may set several attributes on the given object, most of them starting with underscores.

During initialization of vertex regions, several vertex lists will be created.
If the given object has an attribute called batch3d it will be used, else it will be created.

If the batch already existed, the draw() method will do nothing, else it will draw the batch.

Memory leaks may occur if this is called more than once on the same object without calling cleanup() first.

	
draw(obj)

	Actually draws the model of the given object to the render target.

Note that if the batch used for this object already existed, drawing will be skipped as the batch should be drawn by the owner of it.

	
ensureModelData(obj)

	Ensures that the given obj has been initialized to be used with this model.

If the object is found to not be initialized, it will be initialized.

	
redraw(obj)

	Redraws the model of the given object.

Note that currently this method probably won’t change any data since all movement and animation is done through pyglet groups.

	
remove(obj)

	Called if the actor is removed from the world.

Can be extended for custom features, currently calls cleanup().

	
setAnimation(obj, animation, transition=None, force=False)

	Sets the animation to be used by the object.

See Actor.setAnimation() for more information.

peng3d.camera - Camera System

	
class peng3d.camera.Camera(world, name, pos=None, rot=None)

	Camera object representing a location to draw from.

Each Camera object is bound to a world and has three properties: a name, pos and rot.

The name of the camera can be any string and is used to identify the camera and thus should be unique.

	
on_activate(old)

	Fake event handler called when this camera is made current by a WorldView() object.

	
on_move(old, new)

	Fake event handler called when this camera moves.

The old and new parameters are both 3D Locations and are not equal. Each parameter is a 3-tuple of (x,y,z) in world coordinates.

	
on_rotate(old, new)

	Fake event handler called when this camera is rotated.

The old and new parameters are both rotations and are not equal. Each parameter is a 2-tuple of (yaw,pitch).

	
pos

	Property for accessing the position of the camera.

This property uses a setter to call the on_move() method if set and the new location is not equal to the old location.

	
rot

	Property for accessing the rotation of the camera.

This property uses a setter to call the on_rotate() method if set and the new location is not equal to the old location.

	
class peng3d.camera.CameraActorFollower(world, name, actor)

	Special Camera that follows the specified Actor().

Note that neither the on_move() nor the on_rotate() event handlers are called due to the way the updating works.

	
pos

	This property always equals the value of self.actor.pos.

This property may also be written to.

	
rot

	This property always equals the value of self.actor.rot.

This property may also be written to.

peng3d.world - World, Terrain and Actor management

	
class peng3d.world.World(peng)

	World containing terrain, actors, cameras and views.

See the docs about Camera(), WorldView(), Actor() for more information about each class.

This class does not draw anything, see StaticWorld() for drawing simple terrain.

	
addActor(actor)

	Adds the given actor to the internal registry.

Note that this actors uuid attribute must be unique, else it will override any actors previously registered with its UUID.

	
addCamera(camera)

	Add the camera to the internal registry.

Each camera name must be unique, or else only the most recent version will be used. This behavior should not be relied on because some objects may cache objects.

Additionally, only instances of Camera() may be used, everything else raises a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	
addView(view)

	Adds the supplied WorldView() object to the internal registry.

The same restrictions as for cameras apply, e.g. no duplicate names.

Additionally, only instances of WorldView() may be used, everything else raises a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	
getView(name)

	Returns the view with name name.

Raises a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the view does not exist.

	
render3d(view=None)

	Renders the world in 3d-mode.

If you want to render custom terrain, you may override this method. Be careful that you still call the original method or else actors may not be rendered.

	
class peng3d.world.StaticWorld(peng, quads, colors)

	Subclass of StaticWorld(), allows for semi-static terrain to be rendered.

This class is not suitable for highly complex or user-modifiable terrain.

quads is a list of 3d vertices, e.g. a single quad may be [-1,-1,-1, 1,-1,-1, 1,-1,1, -1,-1,1], which represents a rectangle of size 2x2 centered around 0,0.
It should also be noted that all quads have to be in a single list.

colors is a list of RGB Colors in a similar format to quads but with colors instead. Note that there must be a color for every vertex in the vertex list.
Every color is an integer between 0 and 255 using the internal pyglet scheme c3B/static.

You can modify the terrain via the terrain attribute, note that it is a pyglet vertex list, and not a python list.

	
render3d(view=None)

	Renders the world.

	
class peng3d.world.WorldView(world, name, cam)

	Object representing a view on the world.

A WorldView() object references a camera and has a name.

cam is a valid camera name known to the world object supplied.

	
cam

	Property for getting the currently active camera.

Always equals self.cameras[self.activeCamera].

	
on_menu_enter(old)

	Fake event handler called by Layer.on_menu_enter() when the containing menu is entered.

	
on_menu_exit(new)

	Fake event handler, same as on_menu_enter() but for exiting menus instead.

	
pos

	Property for accessing the current position of the active camera.

The value of this property will always be a list of length 3.

This property can also be written to.

	
rot

	Property for accessing the current rotation of the active camera.

This property can also be written to.

	
setActiveCamera(name)

	Sets the active camera.

This method also calls the Camera.on_activate() event handler if the camera is not already active.

	
class peng3d.world.WorldViewMouseRotatable(world, name, cam)

	Subclass of WorldView() that is rotatable using the user.

Moving the mouse cursor left or right will rotate the attached camera horizontally and moving the mouse cursor up or down will rotate the camera vertically.

By default, each pixel traveled changes the angle in degrees by 0.15, though this can be changed via the controls.mouse.sensitivity config value.

	
on_key_press(symbol, modifiers)

	Keyboard event handler handling only the escape key.

If an escape key press is detected, mouse exclusivity is toggled via PengWindow.toggle_exclusivity().

	
on_menu_enter(old)

	Fake event handler, same as WorldView.on_menu_enter() but forces mouse exclusivity.

	
on_menu_exit(new)

	Fake event handler, same as WorldView.on_menu_exit() but force-disables mouse exclusivity.

	
on_mouse_drag(x, y, dx, dy, buttons, modifiers)

	Handler used to still enable mouse movement while a button is pressed.

	
on_mouse_motion(x, y, dx, dy)

	Handles mouse motion and rotates the attached camera accordingly.

For more information about how to customize mouse movement, see the class documentation here WorldViewMouseRotatable().

peng3d.actor - Extendable Actor System

	
class peng3d.actor.Actor(peng, world, uuid=None, pos=[0, 0, 0])

	Actor object, base class for all other Actors in the world.

An actor represents an object in the world, for example the player, an animal, enemy or dropped item.

Everything that is not part of the terrain should be an actor.

The default actor does not do anything, you should look at the subclasses for more information.

	
addController(controller)

	Adds a controller to the actor.

A controller can control its actor and can act as a bridge between actor and user inputs.

Controllers may be added anytime during the lifetime of an actor.

	
on_move(old)

	Fake event handler called if the location of this actor changes.

This handler is called after the location has changed.

	Parameters

	old (list [https://docs.python.org/3/library/stdtypes.html#list]) – The previous position

	
pos

	Property allowing access to the position of this actor.

This actor is read-write but calls on_move() if it is set.

	
render(view=None)

	Called by World.render3d() to render this actor.

By default, this method calls the draw method of its model, if any.

For custom render behavior, it is recommended to extend this method or modify the model.

	
setAnimation(animation, transition=None, force=False)

	Sets the animation the model of this actor should show.

animation is the name of the animation to switch to.

transition can be used to override the transition between the animations.

force can be used to force reset the animation even if it is already running.

If there is no model set for this actor, a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] will be raised.

	
setModel(model)

	Sets the model this actor should use when drawing.

This method also automatically initializes the new model and removes the old, if any.

	
class peng3d.actor.RotatableActor(peng, world, uuid=None, pos=[0, 0, 0], rot=[0, 0])

	Actor that can also be rotated.

This subclass adds a rotational value to the actor and a method to move the actor along the current rotation.

	
move(dist)

	Moves the actor using standard trigonometry along the current rotational vector.

	Parameters

	dist (float [https://docs.python.org/3/library/functions.html#float]) – Distance to move

Todo

Test this method, also with negative distances

	
on_rotate(old)

	Fake event handler called if the rotation of this actor changes.

This handler is called after the rotation has been made.

	Parameters

	old (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Old rotation before rotating

	
rot

	Property for accessing the rotation of this actor.

Rotation is a tuple of (x,y) where y is clamped to -90 and 90.
x rolls over at 360, resulting in a seamless experience for players.

This property may also be written to, this calls on_rotate().

	
peng3d.actor.RotateableActor

	alias of peng3d.actor.RotatableActor

	
class peng3d.actor.Controller(actor)

	Base class for all controllers.

Controllers define behavior of Actors and can be used to control them via e.g. the keyboard or an AI.

Every controller is bound to its actor and can be enabled and disabled individually.
You may also deactivate all controllers of an Actor by setting the enabled key of Actor.controlleroptions to False.

	
enabled

	Property allowing to get and set if this controller should be active.

When getting this property, the result of ANDing the internal flag and the actor flag is returned.

When setting, only the local internal flag is set, allowing other controllers to still work.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – when the supplied value is not of type bool

	
registerEventHandlers()

	Method to be overridden by subclasses for registering event handlers.

Automatically called upon object creation.

peng3d.actor.player - Player Actors

	
class peng3d.actor.player.BasicPlayer(peng, world, uuid=None, pos=[0, 0, 0], rot=[0, 0])

	Basic Player class, subclass of RotatableActor().

This class adds no features currently, it can be used to identify player actors via isinstance() [https://docs.python.org/3/library/functions.html#isinstance].

	
class peng3d.actor.player.FirstPersonPlayer(peng, world, uuid=None, pos=[0, 0, 0], rot=[0, 0])

	Old class allowing to create standard first-person players easily.

	Deprecated

	See EgoMouseRotationalController() and FourDirectionalMoveController() instead

	
get_motion_vector()

	Returns the movement vector according to held buttons and the rotation.

	Returns

	3-Tuple of (dx,dy,dz)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
update(dt)

	Internal method used for moving the player.

	Parameters

	dt (float [https://docs.python.org/3/library/functions.html#float]) – Time delta since the last call to this method

	
class peng3d.actor.player.FourDirectionalMoveController(*args, **kwargs)

	Controller allowing the user to control the actor with the keyboard.

You can configure the used keybinds with the controls.controls.forward etc.
The keybinds can also be changed with their keybindname, e.g. peng3d:actor.<actor uuid>.player.controls.forward for forward.

The movement speed may also be changed via the movespeed instance attribute, which defaults to controls.controls.movespeed.

You may also access the currently held keys via move, which is a list with 2 items, forwards/backwards and left/right.

	
get_motion_vector()

	Returns the movement vector according to held buttons and the rotation.

	Returns

	3-Tuple of (dx,dy,dz)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
registerEventHandlers()

	Registers needed keybinds and schedules the update() Method.

You can control what keybinds are used via the controls.controls.forward etc. Configuration Values.

	
update(dt)

	Should be called regularly to move the actor.

This method does nothing if the enabled property is set to false.

Note that this method is called automatically and should not be manually called.

	
class peng3d.actor.player.EgoMouseRotationalController(*args, **kwargs)

	Controller allowing the user to rotate the actor with the mouse.

	
registerEventHandlers()

	Registers the motion and drag handlers.

Note that because of the way pyglet treats mouse dragging, there is also an handler registered to the on_mouse_drag event.

	
class peng3d.actor.player.BasicFlightController(*args, **kwargs)

	Controller allowing the user to move up and down with the jump and crouch controls.

The used keybinds may be configured via controls.controls.crouch and controls.controls.jump.

The vertical speed used when flying may be configured via controls.controls.verticalspeed or the speed attribute.

	
registerEventHandlers()

	Registers the up and down handlers.

Also registers a scheduled function every 60th of a second, causing pyglet to redraw your window with 60fps.

	
update(dt)

	Should be called regularly to move the actor.

This method does nothing if the enabled property is set to False.

This method is called automatically and should not be called manually.

peng3d.keybind - Dynamic Keybinding System

	
class peng3d.keybind.KeybindHandler(peng)

	Handler class that automatically converts incoming key events to key combo events.

A keybinding always is of format [MOD1-[MOD2-]]KEY with potentially more modifiers.

See MODNAME2MODIFIER for more information about existing modifiers.

Note that the order in which modifiers are listed also is the order of the above listing.

Keybindings are matched exactly, and optionally a second time without the modifiers listed in OPTIONAL_MODNAMES if controls.keybinds.strict is set to False.

	
add(keybind, kbname, handler, mod=True)

	Adds a keybind to the internal registry.

Keybind names should be of the format namespace:category.subcategory.namee.g. peng3d:actor.player.controls.forward for the forward key combo for the player actor.

	Parameters

	
	keybind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Keybind string, as described above

	kbname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the keybind, may be used to later change the keybinding without re-registering

	handler (function) – Function or any other callable called with the positional arguments (symbol,modifiers,release) if the keybind is pressed or released

	mod (int [https://docs.python.org/3/library/functions.html#int]) – If the keybind should respect modifiers

	
changeKeybind(kbname, combo)

	Changes a keybind of a specific keybindname.

	Parameters

	
	kbname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Same as kbname of add()

	combo (str [https://docs.python.org/3/library/stdtypes.html#str]) – New key combination

	
handle_combo(combo, symbol, modifiers, release=False, mod=True)

	Handles a key combination and dispatches associated events.

First, all keybind handlers registered via add() will be handled,
then the pyglet event on_key_combo with params (combo,symbol,modifiers,release,mod) is sent to the Peng() instance.

Also sends the events peng3d:keybind.combo, peng3d:keybind.combo.press and :peng3d:event`peng3d:keybind.combo.release`.

	Params str combo

	Key combination pressed

	Params int symbol

	Key pressed, passed from the same argument within pyglet

	Params int modifiers

	Modifiers held while the key was pressed

	Params bool release

	If the combo was released

	Params bool mod

	If the combo was sent without mods

	
mod_is_held(modname, modifiers)

	Helper method to simplify checking if a modifier is held.

	Parameters

	
	modname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the modifier, see MODNAME2MODIFIER

	modifiers (int [https://docs.python.org/3/library/functions.html#int]) – Bitmask to check in, same as the modifiers argument of the on_key_press etc. handlers

	
peng3d.keybind.MODNAME2MODIFIER

	Ordered Bidict that maps between user-friendly names and internal constants.

Note that since this is a bidict, you can query the reverse mapping by accessing MODNAME2MODIFIER.inv.
The non-inverse mapping maps from user-friendly name to internal constant.

This mapping is used by the Keybind system to convert the modifier constants to names.

The Mapping is as follows:

	Name

	Pyglet constant

	Notes

	ctrl

	key.MOD_ACCEL

	

	alt

	key.MOD_ALT

	1

	shift

	key.MOD_SHIFT

	

	option

	key.MOD_OPTION

	

	capslock

	key.MOD_CAPSLOCK

	

	numlock

	key.MOD_NUMLOCK

	

	scrollock

	key.MOD_SCROLLOCK

	

1: automatically replaced by MOD_CTRL on Darwin/OSX

	
peng3d.keybind.MOD_RELEASE = 32768

	Fake modifier applied when a key is released instead of pressed.

This modifier internally has the value of 1<<15 and should thus be safe from any added modifiers in the future.

Note that this modifier is only applied within keybinds, not in regular on_key_down and on_key_up handlers.

	
peng3d.keybind.OPTIONAL_MODNAMES = ['capslock', 'numlock', 'scrollock']

	List of modifiers that are not substantial to a key combo.

If the controls.keybinds.strict option is disabled, every key combo is emitted with and without the modifiers in this list.
Else, only the combo with these modifiers is emitted.

This may cause no more combos to get through if numlock or capslock are activated.

peng3d.config - Configuration system

	
peng3d.config.CFG_FOG_DEFAULT = {'color': None, 'enable': False, 'end': 160, 'start': 128}

	Default fog configuration.

This configuration simply disables fog.

	
peng3d.config.CFG_LIGHT_DEFAULT = {'enable': False}

	Default lighting configuration.

This configuration simply disables lighting.

	
peng3d.config.DEFAULT_CONFIG

	Default configuration values.

All default configuration values are stored here, for more information about specific config values, see Configuration Options for peng3d.

	
class peng3d.config.Config(config=None, defaults={})

	Configuration object imitating a dictionary.

config can be any dictionary-style object and is used to store the configuration set by the user.
This object only needs to implement the __getitem__, __setitem__ and __contains__ special methods.

defaults can be any dictionary-style object and is only read from in case the config object does not contain the key.
Every config object is stackable, e.g. you can pass another Config object as the defaults object.

Example for stacking configs:

>>> myconf = Config()
>>> myconf2 = Config(defaults=myconf)
>>> myconf["foo"] = "bar"
>>> print(myconf2["foo"])
bar
>>> myconf2["bar"] = "foo"
>>> print(myconf2["bar"])
foo
>>> print(myconf["bar"])
Traceback (most recent call last):
...
KeyError: Key "bar" does not exist

There is no limit in stacking configurations, though higher-stacked configs may get slow when defaulting due to propagating through the whole chain.

peng3d.util - Utility Functions and Classes

	
class peng3d.util.WatchingList(l, callback=None)

	Subclass of list() implementing a watched list.

A WatchingList will call the given callback with a reference to itself whenever it is modified.
Internally, the callback is stored as a weak reference, meaning that the creator should keep a reference around.

This class is used in peng3d.gui.widgets.BasicWidget() to allow for modifying single coordinates of the pos and size properties.

	
peng3d.util.register_pyglet_handler(peng, func, event, raiseErrors=False)

	Registers the given pyglet-style event handler for the given pyglet event.

This function allows pyglet-style event handlers to receive events bridged
through the peng3d event system. Internally, this function creates a lambda
function that decodes the arguments and then calls the pyglet-style event handler.

The raiseErrors flag is passed through to the peng3d event system and will
cause any errors raised by this handler to be ignored.

See also

See addEventListener() for more information.

	
class peng3d.util.ActionDispatcher

	Helper Class to be used to enable action support.

Actions are simple callbacks that are specific to the instance they are registered with.

To be able to use actions, a class must be a subclass of ActionDispatcher().

Creation of required data structures is handled automatically when the first action is added.

Internally, this object uses the actions attribute to store a map of action names to
a list of callbacks.

	
addAction(action, func, *args, **kwargs)

	Adds a callback to the specified action.

All other positional and keyword arguments will be stored and passed to the function upon activation.

	
doAction(action)

	Helper method that calls all callbacks registered for the given action.

	
class peng3d.util.SmartRegistry(data=None, reuse_ids=False, start_id=0, max_id=inf, default_reg=None)

	Smart registry allowing easy management of mappings from int to str and vice versa.

Note that bidict is required to be able to use this class.

data may be a dictionary to initialize the registry with. Only dictionaries
gotten from the data property should be used.

reuse_ids specifies whether or not the automatic ID generator should re-use
old, now unused IDs. See genNewID() for more information.

start_id is the lowest ID that will be generated by the automatic ID generator.

max_id is the highest ID that will be generated by the automatic ID generator.
Should this limit by reached, an AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] will be raised.

default_reg may be a dictionary mapping IDs to names. It will only be used if
data did not already contain a registry.

It is possible to access the registry via the dict-style reg[key] notation.
This will return the name of whatever object was used as the key.

Registering is also possible in a similar manner, like reg[name]=id.
id may be None to automatically generate one.

This class also supports the in operator, note that both IDs and names are checked.

	
data

	Read-only property to access the internal data.

This is a dictionary containing all information necessary to re-create the registry
via the data argument.

The returned object is fully JSON/YAML/MessagePack serializable, as it only contains
basic python data types.

	
genNewID()

	Generates a new ID.

If reuse_ids was false, the new ID will be read from an internal counter
which is also automatically increased. This means that the newly generated ID is already reserved.

If reuse_ids was true, this method starts counting up from start_id until it finds an
ID that is not currently known. Note that the ID is not reserved, this means that
calling this method simultaneously from multiple threads may cause the same ID to be returned twice.

Additionally, if the ID is greater or equal to max_id, an AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] is raised.

	
normalizeID(in_id)

	Takes in an object and normalizes it to its ID/integer representation.

Currently, only integers and strings may be passed in, else a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]
will be thrown.

	
normalizeName(in_name)

	Takes in an object and normalizes it to its name/string.

Currently, only integers and strings may be passed in, else a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]
will be thrown.

	
register(name, force_id=None)

	Registers a name to the registry.

name is the name of the object and must be a string.

force_id can be optionally set to override the automatic ID generation
and force a specific ID.

Note that using force_id is discouraged, since it may cause problems when reuse_ids is false.

peng3d.util.gui - GUI Utility Functions and Classes

	
peng3d.util.gui.mouse_aabb(mpos, size, pos)

	AABB Collision checker that can be used for most axis-aligned collisions.

Intended for use in widgets to check if the mouse is within the bounds of a particular widget.

	
peng3d.util.gui.points2htmlfontsize(points)

	Approximate font size converter, converts from Points to HTML tag font sizes.

Note that this method is very inaccurate, since there are only seven possible output values that represent at least 25 input values.
When in doubt, this function always rounds down, e.g. every input value less than eight is converted to HTML size 1.

	
class peng3d.util.gui.ResourceGroup(data, parent=None)

	Pyglet Group that represents a Resource as returned by the ResourceManager().

This Group should automatically merge different groups with different resources that are on the same texture atlas.

peng3d.pyglet_patch - Pyglet Monkeypatches

These patches are used to fix specific problems with pyglet.

Note that these are not likely to stay, since I will have to verify that they still work with every Pyglet Release.

	
peng3d.pyglet_patch.patch_float2int()

	Patches the pyglet.graphics.vertexattribute [https://pyglet.readthedocs.io/en/latest/modules/graphics/vertexattribute.html#module-pyglet.graphics.vertexattribute], pyglet.graphics.vertexbuffer [https://pyglet.readthedocs.io/en/latest/modules/graphics/vertexbuffer.html#module-pyglet.graphics.vertexbuffer] and pyglet.graphics.vertexdomain [https://pyglet.readthedocs.io/en/latest/modules/graphics/vertexdomain.html#module-pyglet.graphics.vertexdomain] modules.

This patch is only needed with Python 3.x and will be applied automatically when initializing Peng().

The patches consist of simply converting some list indices, slices and other numbers to integers from floats with .0. These patches have not been tested thoroughly, but work with at least test.py and test_gui.py.

Can be enabled and disabled via pyglet.patch.patch_float2int.

peng3d.version - Version information

	
peng3d.version.VERSION

	Full version number of format MAJOR.MINOR.BUGFIX where major is increased only on very major feature changes.
Minor is changed if a new feature is introduced or an API change is made, while bugfix only changes if an important fix for a bug needs to be provided before the next release.

Used to display the version in the title of the documentation.

See also

See the Distutils docs on version numbers [https://docs.python.org/2/distutils/setupscript.html#additional-meta-data] for more information.

	
peng3d.version.RELEASE

	Currently the same as VERSION.

Used to display the version on the top-right of the documentation.

Events used by Peng3d

See also

This document describes the events used by peng3d, see
peng3d.peng.Peng.sendEvent() for information about the event system itself.

Note that there is no completely safe way to get a list of all events used by an
application, but you should get most events by setting the config value
debug.events.dumpfile to a valid file name and running the application in
question. Make sure to trigger all events, or else they may not appear in the list.

This document is sectioned after the categories of events used.

Note that many applications will add their own events, which should be listed in their documentation.

Peng3d Events using sendEvent()

Events listed here can be sent via the sendEvent()
method and be received via addEventListener().

If possible, this system should be used, as it is better and has many improvements over previous systems.

Most of these events use a dictionary containing at least the peng key as their data parameter.

Special events

These events are special and should not be sent manually, they are mostly for backwards-compatibility.

	
peng3d:pyglet

	Special event sent by sendPygletEvent() for compatibility.

Additional parameters:

args is a list of the given parameters.

window is the window this event originated from.

src is the object this event was sent via.

event_type is the pyglet event type.

See also

See pyglet:* for another way of accessing pyglet events.

	
pyglet:*

	Special event sent by sendPygletEvent() for compatibility.

See peng3d:pyglet for more information on the given parameters.

peng3d:peng.* Events Category

These events are typically sent by the main Peng() instance.

	
peng3d:peng.run

	Triggered once when calling run() just before starting the event loop.

Additional parameters are window set to the main window object and
evloop set to the argument of the same name.

	
peng3d:peng.exit

	Triggered once the pyglet event loop exits.

Note that the calling method may cause the program to continue running.

This event has no additional parameters.

peng3d:window.* Events Category

These events are sent to mark changes to an instance of PengWindow().

Note that some of these events are not sent by the window itself and do not require a window to exist.

	
peng3d:window.create.pre

	
peng3d:window.create

	
peng3d:window.create.post

	These events are sent when the main window is created.

The event peng3d:window.create.pre has the additional
parameter cls containing the class used to create the window.

The events peng3d:window.create and peng3d:window.create.post
both have the additional parameter window set to the window object.

Note that the window attribute of Peng() is only
available after the handling of peng3d:window.create has finished.

	
peng3d:window.menu.add

	Triggered whenever a menu is added to the window.

Additional parameters are window set to the window object and menu set to the menu object.

	
peng3d:window.menu.change

	Triggered whenever the active menu is changed.

This event is sent after other event handlers have finished processing.

Additional parameters:

window is the current window object.

old is the name of the old menu. This may be None if there was no active menu.

menu is the name of the new menu.

	
peng3d:window.toggle_exclusive

	Triggered whenever the mouse exclusivity is changed via toggle_exclusivity().

Additional parameters are window set to the window object and exclusive set to the current exclusivity state.

peng3d:rsrc.* Events Category

These events are sent by the ResourceManager() to
signal that either the manager itself was modified or a resource was changed.

	
peng3d:rsrc.init.pre

	
peng3d:rsrc.init

	
peng3d:rsrc.init.post

	These events are sent when the resource manager is first initialized.

The event peng3d:rsrc.init.pre has the additional
parameter basepath containing the base path of the new resource manager.

The events peng3d:rsrc.init and peng3d:rsrc.init.post
both have the additional parameter rsrcMgr set to the newly created resource manager.

Note that the resourceMgr attribute of Peng()
is only available after the handling of peng3d:rsrc.init has finished.

	
peng3d:rsrc.category.add

	Sent when a new resource category is added.

The additional parameter category is set to the name of the new category.

	
peng3d:rsrc.tex.load

	Sent when a texture resource is first loaded.

Additional parameters are name and category set to their corresponding
arguments given to loadTex().

	
peng3d:rsrc.model.load

	Sent when a model resource is first loaded.

Additional parameters are name set to the name of the model.

peng3d:i18n.* Events Category

See also

See TranslationManager() for more information about the translation system.

	
peng3d.i18n.set_lang

	Sent whenever the default language is set.

Note that this event is sent regardless of whether or not the language actually changed.

Additional parameters are i18n, set to the translation manager, and lang
set to the new language.

peng3d:keybind.* Events Category

These events usually mark an event related to a specific key combination.

See also

See KeybindHandler() for more information on the keybind system.

	
peng3d:keybind.add

	Triggered when a keybind is added to the system.

Additional parameters are all arguments given to add().

	
peng3d:keybind.change

	Triggered when a keybind is changed.

Additional parameters are all arguments given to changeKeybind().

	
peng3d:keybind.combo

	
peng3d:keybind.combo.press

	
peng3d:keybind.combo.release

	These events are triggered whenever a key combination is detected.

Note that this event will be sent regardless of whether or not there are any
handlers registered for the keybind in question.

peng3d:keybind.combo is always sent, and depending on the
release flag, either peng3d:keybind.combo.press or
peng3d:keybind.combo.release is also sent.

Additional parameters are the same as the arguments given to handle_combo().

Pyglet Events using sendPygletEvent()

Events listed here can be sent via the sendPygletEvent()
method and be received via addPygletListener().

There are also several events sent by pyglet itself, see the Pyglet Docs [http://pyglet.readthedocs.io/en/pyglet-1.2-maintenance/index.html] for more information.

Todo

Add docs for custom pyglet events.

Configuration Options for peng3d

Almost all important settings can be configured per-window or globally via the Peng.cfg or Window.cfg attributes.

Graphic Settings/OpenGL Base State

For most of these graphical settings, it is important to actually use the exact type specified.
For example, you should only pass floats and not integers if the specified type is float.

	
graphics.clearColor

	A 4-tuple of RGBA colors used to clear the window before drawing.

Each Color part should be a float between 0 and 1.

By default, this option is set to (0.,0.,0.,1.).

Be sure to verify that each value is a float, not an integer.

	
graphics.wireframe

	A Boolean value determining the polygon-fill-mode used by OpenGL.

True results in GL_LINE being used, while False will result in GL_FILL being used.

This option can be used to create a wireframe-like mode.

The default value for this option is False.

Note

This option is always turned off by PengWindow.set2d() but re-enabled by PengWindow.set3d() if necessary.

	
graphics.fieldofview

	An float value passed to gluPerspective() as the first argument.

For more information about this config option, see the GL/GLU documentation.

By default, this option is set to 65.0.

	
graphics.nearclip

	
graphics.farclip

	An float value specifying the near and far clipping plane, respectively.

These clipping planes determine at what point vertices are cut off to save GPU cycles.

By default, graphics.nearclip equals 0.1 and graphics.farclip equals 10000.

Fog settings

	
graphics.fogSettings

	Config() object storing the fog-specific settings.

To access fog settings, use peng.cfg["graphics.fogSettings"]["<configoption>"] as appropriate.

	
graphics.fogSettings["enable"]

	A boolean value activating or deactivating the OpenGL fog.

By default disabled.

	
graphics.fogSettings["color"]

	A 4-Tuple representing an RGB Color.

Note that the values should be 0<=n<=1, not in range(0,256).

For most cases, this value should be set to the clear color, else, visual artifacts may occur.

	
graphics.fogSettings["start"]

	
graphics.fogSettings["end"]

	Defines start and end of the fog zone.

The end value should be nearer than the far clipping plane to avoid cut-off vertices.

Each value should be a float and is measured in standard OpenGL units.

By default, the fog starts at 128 units and ends 32 units further out.

Light settings

	
graphics.lightSettings

	Config() object storing the light settings.

To access light settings, use peng.cfg["graphics.lightSettings"]["<configoption>"] as appropriate.

	
graphics.lightSettings["enable"]

	A boolean value activating or deactivating the light config.

By default disabled.

Todo

Implement light settings with shader system

Controls

Note that most of these config values are read when the appropriate objects are initialized,
this means that you should consult the objects documentation for how to change the option at runtime.

Mouse

	
controls.mouse.sensitivity

	Degrees to move per pixel traveled by the mouse.

This applies to both horizontal and vertical movement.

Defaults to 0.15.

Keyboard

	
controls.controls.movespeed

	Speed multiplier for most movements.

Defaults to 10.0.

	
controls.controls.verticalspeed

	Speed multiplier for vertical movement.

Defaults to 5.0.

These keys are all registered with the mod flag set to False, thus they will ignore any modifiers.

	
controls.controls.forward

	
controls.controls.backward

	
controls.controls.strafeleft

	
controls.controls.straferight

	Four basic movement keys.

Each of these keys can be changed individually.

Defaults are w, s, a and d, respectively.

	
controls.controls.jump

	Jump key.

Defaults to space.

	
controls.controls.crouch

	Crouch key.

Defaults to lshift.

Commonly used Key Combination Configuration Values

	
controls.keybinds.common.copy

	
controls.keybinds.common.paste

	
controls.keybinds.common.cut

	Key Combinations used to be used by various parts of the GUI.

Currently used by the peng3d.gui.text.TextInput() Widget for basic clipboard operations.

By default, these are set to the commonly used values of Ctrl-C for Copy,
Ctrl-V for Paste and Ctrl-X for Cutting.

General Controls Configuration Values

	
controls.keybinds.strict

	Whether or not keybindings should be strict.

See peng3d.keybind.KeybindHandler() for more information.

Debug Options

All of these options are disabled by default.

	
controls.keybinds.debug

	If enabled, all pressed keybinds will be printed.

	
debug.events.dump

	If enabled, all events are printed including their arguments.

Note that on_draw and on_mouse_motion are never printed to avoid excessive outputs.

	
debug.events.logerr

	If enabled, Exceptions catched during event handling are printed.

Note that only AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] exceptions are catched and printed, other exceptions will propagate further.

	
debug.events.register

	If enabled, all event handler registrations are printed.

	
debug.events.dumpfile

	If not an empty string, this should point to a valid file path for dumping all event names.

If enabled, all event handler registrations and event sends will be logged to this file.
Note that only the name of the event without data is stored and automatically deduplicated.

Defaults to "".

Resource Options

	
rsrc.enable

	Enables or Disables the resource module.

By default enabled.

	
rsrc.basepath

	Base directory of the Resource Manager.

By default determined via pyglet.resource.get_script_home() [https://pyglet.readthedocs.io/en/latest/modules/resource.html#pyglet.resource.get_script_home].

	
rsrc.maxtexsize

	Maximum Texture size per bin.

Limits the texture in size, useful if the graphics card has big textures (16kx16k) but only few textures will be needed.

By default set to 1024.

Translation Options

	
i18n.enable

	Enables or Disables the i18n module.

By default enabled.

	
i18n.lang

	Determines the default language selected upon startup.

Note that setting this config option after creating the first window will have
no effect. Use setLang() instead.

Currently defaults to en, but may be changed to operating system language
in the future.

Event Options

	
events.removeonerror

	If True, automatically removes erroring event handlers.
Note that the raiseErrors parameter takes precedent over this setting.

Defaults to True.

	
events.maxignore

	An integer number defining the maximum amount of ignored event messages to write to the log file.

This setting is per event, not globally.

Defaults to 3.

Other Options

	
pyglet.patch.patch_float2int

	Enables the float2int patch for pyglet.

See peng3d.pyglet_patch.patch_float2int() for more information.

Enabled by default.

Todo

Implement more config options

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 peng3d	
 Peng3D main module

 	
 	
 peng3d.actor	
 Extendable Actor System

 	
 	
 peng3d.actor.player	
 Player Actors

 	
 	
 peng3d.camera	
 Camera System

 	
 	
 peng3d.config	
 Configuration system

 	
 	
 peng3d.gui	
 2D Widget based GUI System

 	
 	
 peng3d.gui.button	
 Button Widgets

 	
 	
 peng3d.gui.container	
 GUI Container and Scrolling system

 	
 	
 peng3d.gui.layered	
 Layered Widgets

 	
 	
 peng3d.gui.layout	
 Layout Helper Classes

 	
 	
 peng3d.gui.menus	
 Menus and Dialogs

 	
 	
 peng3d.gui.slider	
 Slider and Progressbar Widgets

 	
 	
 peng3d.gui.text	
 Textual Widgets

 	
 	
 peng3d.gui.widgets	
 2D GUI Widget Base classes

 	
 	
 peng3d.i18n	
 Lightweight Translation Manager

 	
 	
 peng3d.keybind	
 Dynamic Keybinding System

 	
 	
 peng3d.layer	
 Extensible 2D/3D Layering

 	
 	
 peng3d.menu	
 Flexible menu system

 	
 	
 peng3d.model	
 Model and Animation system

 	
 	
 peng3d.peng	
 Main Engine class

 	
 	
 peng3d.pyglet_patch	
 Pyglet Monkeypatches

 	
 	
 peng3d.resource	
 Resource loading system

 	
 	
 peng3d.util	
 Utility Functions and Classes

 	
 	
 peng3d.util.gui	
 GUI Utility Functions and Classes

 	
 	
 peng3d.version	
 Version information

 	
 	
 peng3d.window	
 Windowing with batteries included

 	
 	
 peng3d.world	
 World, Terrain and Actor management

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ActionDispatcher (class in peng3d.util)

 	activate() (peng3d.gui.menus.DialogSubMenu method)

 	Actor (class in peng3d.actor)

 	add() (peng3d.keybind.KeybindHandler method)

 	add_btn_cancel() (peng3d.gui.menus.ConfirmSubMenu method)

 	add_btn_confirm() (peng3d.gui.menus.ConfirmSubMenu method)

 	add_btn_ok() (peng3d.gui.menus.DialogSubMenu method)

 	add_label_main() (peng3d.gui.menus.DialogSubMenu method)

 	add_progressbar() (peng3d.gui.menus.AdvancedProgressSubMenu method)

 	(peng3d.gui.menus.ProgressSubMenu method)

 	add_widgets() (peng3d.gui.menus.DialogSubMenu method)

 	addAction() (peng3d.util.ActionDispatcher method)

 	addActor() (peng3d.world.World method)

 	addBorderstyle() (peng3d.gui.button.ButtonBackground method)

 	addCamera() (peng3d.world.World method)

 	addCategory() (peng3d.gui.menus.AdvancedProgressSubMenu method)

 	(peng3d.gui.slider.AdvancedProgressbar method)

 	(peng3d.resource.ResourceManager method)

 	
 	addController() (peng3d.actor.Actor method)

 	addEventListener() (peng3d.peng.Peng method)

 	addFromTex() (peng3d.resource.ResourceManager method)

 	addImage() (peng3d.gui.layered.DynImageWidgetLayer method)

 	addLayer() (peng3d.gui.layered.LayeredWidget method)

 	(peng3d.menu.Menu method)

 	addMenu() (peng3d.window.PengWindow method)

 	addPygletListener() (peng3d.peng.Peng method)

 	addRegion() (peng3d.model.Bone method)

 	addStyle() (peng3d.gui.layered.BaseBorderWidgetLayer method)

 	addSubMenu() (peng3d.gui.GUIMenu method)

 	addView() (peng3d.world.World method)

 	addWidget() (peng3d.gui.container.Container method)

 	(peng3d.gui.SubMenu method)

 	addWorld() (peng3d.menu.BasicMenu method)

 	AdvancedProgressbar (class in peng3d.gui.slider)

 	AdvancedProgressSubMenu (class in peng3d.gui.menus)

 	Animation (class in peng3d.model)

 	auto_exit (peng3d.gui.menus.ProgressSubMenu attribute)

B

 	
 	Background (class in peng3d.gui.widgets)

 	BaseBorderWidgetLayer (class in peng3d.gui.layered)

 	BasicFlightController (class in peng3d.actor.player)

 	BasicMenu (class in peng3d.menu)

 	BasicPlayer (class in peng3d.actor.player)

 	BasicWidget (class in peng3d.gui.widgets)

 	
 	BasicWidgetLayer (class in peng3d.gui.layered)

 	Bone (class in peng3d.model)

 	border (peng3d.gui.layered.WidgetLayer attribute)

 	Button (class in peng3d.gui.button)

 	ButtonBackground (class in peng3d.gui.button)

 	ButtonBorderWidgetLayer (class in peng3d.gui.layered)

C

 	
 	calcSphereCoordinates() (in module peng3d.model)

 	cam (peng3d.world.WorldView attribute)

 	Camera (class in peng3d.camera)

 	CameraActorFollower (class in peng3d.camera)

 	cell_size (peng3d.gui.layout.GridLayout attribute)

 	CFG_FOG_DEFAULT (in module peng3d.config)

 	CFG_LIGHT_DEFAULT (in module peng3d.config)

 	changeKeybind() (peng3d.keybind.KeybindHandler method)

 	changeMenu() (peng3d.window.PengWindow method)

 	changeSubMenu() (peng3d.gui.GUIMenu method)

 	Checkbox (class in peng3d.gui.button)

 	CheckboxBackground (class in peng3d.gui.button)

 	cleanup() (peng3d.model.Model method)

 	clickable (peng3d.gui.container.Container attribute)

 	(peng3d.gui.widgets.BasicWidget attribute)

 	Config (class in peng3d.config)

 	
 configuration value

 	controls.controls.backward

 	controls.controls.crouch

 	controls.controls.forward

 	controls.controls.jump

 	controls.controls.movespeed

 	controls.controls.strafeleft

 	controls.controls.straferight

 	controls.controls.verticalspeed

 	controls.keybinds.common.copy

 	controls.keybinds.common.cut

 	controls.keybinds.common.paste

 	controls.keybinds.debug

 	controls.keybinds.strict

 	controls.mouse.sensitivity

 	debug.events.dump

 	debug.events.dumpfile

 	debug.events.logerr

 	debug.events.register

 	events.maxignore

 	events.removeonerror

 	graphics.clearColor

 	graphics.farclip

 	graphics.fieldofview

 	graphics.fogSettings

 	_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Peng3d’s documentation!

 		
 peng3d - Peng3D main module

 		
 peng3d.peng - Main Engine class

 		
 peng3d.window - Windowing with batteries included

 		
 peng3d.layer - Extensible 2D/3D Layering

 		
 peng3d.menu - Flexible menu system

 		
 peng3d.gui - 2D Widget based GUI System

 		
 peng3d.gui.widgets - 2D GUI Widget Base classes

 		
 peng3d.gui.button - Button Widgets

 		
 peng3d.gui.menus - Menus and Dialogs

 		
 Customization

 		
 peng3d.gui.layout - Layout Helper Classes

 		
 peng3d.gui.layered - Layered Widgets

 		
 peng3d.gui.container - GUI Container and Scrolling system

 		
 peng3d.gui.text - Textual Widgets

 		
 peng3d.gui.slider - Slider and Progressbar Widgets

 		
 peng3d.resource - Resource loading system

 		
 peng3d.i18n - Lightweight Translation Manager

 		
 peng3d.model - Model and Animation system

 		
 peng3d.camera - Camera System

 		
 peng3d.world - World, Terrain and Actor management

 		
 peng3d.actor - Extendable Actor System

 		
 peng3d.actor.player - Player Actors

 		
 peng3d.keybind - Dynamic Keybinding System

 		
 peng3d.config - Configuration system

 		
 peng3d.util - Utility Functions and Classes

 		
 peng3d.util.gui - GUI Utility Functions and Classes

 		
 peng3d.pyglet_patch - Pyglet Monkeypatches

 		
 peng3d.version - Version information

 		
 Events used by Peng3d

 		
 Peng3d Events using sendEvent()

 		
 Special events

 		
 peng3d:peng.* Events Category

 		
 peng3d:window.* Events Category

 		
 peng3d:rsrc.* Events Category

 		
 peng3d:i18n.* Events Category

 		
 peng3d:keybind.* Events Category

 		
 Pyglet Events using sendPygletEvent()

 		
 Configuration Options for peng3d

 		
 Graphic Settings/OpenGL Base State

 		
 Fog settings

 		
 Light settings

 		
 Controls

 		
 Mouse

 		
 Keyboard

 		
 Commonly used Key Combination Configuration Values

 		
 General Controls Configuration Values

